期刊文献+

一种采用权重因子的低复杂度空间调制检测算法 被引量:2

A Low Complexity Detection Algorithm Based on the Weight Factors for Spatial Modulation System
原文传递
导出
摘要 针对空间调制系统的最大似然算法复杂度较高的问题,提出一种改进的最大比合并算法.定义一种权重因子,其下标对应发射天线序号;通过对权重因子的值进行降序排列,选取前L个值所对应的天线组成天线候选集,假设天线候选集中的某一根天线被激活,利用迫零算法计算该天线下的发送符号;最后对天线候选集中所有天线和对应的估计符号进行最大似然搜索.仿真结果表明,所提出的新算法在保证次优检测性能的前提下,明显降低了算法的复杂度. Aiming at the high complexity of the maximum likelihood detection algorithm for spatial modulation systems,an improved maximum ratio combing algorithm was proposed.In this algorithm,a weighting factor was defined,whose subscript corresponded to the sequence number of transmitting antenna.Then the values of the weighting factor were sorted in descending order,and the antennas corresponding to the first L values were selected to form the antenna candidate set.Assuming that an antenna in the antenna candidate set was activated,the possible transmit signal was calculated by zero forcing algorithm.Maximum likelihood search was performed for all antennas and corresponding estimation symbols in the antenna candidate set.Simulation results show that the proposed algorithm can significantly reduce the complexity of the algorithm on the premise of ensuring the sub-optimal detection performance.
作者 丁青锋 丁旭 林知明 DING Qing-feng;DING Xu;LIN Zhi-ming(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330000,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第2期31-35,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61501186) 江西省自然科学基金项目(20171BAB202001) 江西省教育厅科研项目(GJJ180307)
关键词 权重因子 空间调制 信号检测算法 候选天线 weight factor spatial modulation signal detection algorithm candidate antenna
  • 相关文献

参考文献3

二级参考文献15

  • 1RENZO D M, HAAS H, GRANT P M. Spatial modulation for multi- pie-antenna wireless systems: a survey[J]. IEEE Communications Magazine, 2011, 49(12): 182-191.
  • 2MESLEH R, HAAS H, AHN C W. Spatial modulation-a new low complexity spectral efficiency enhancing technique[A]. First Interna- tional Conference on Communications and Network[C]. Shanghai, China, 2006. 1-5.
  • 3RENZO D M, HAAS H, GHRAYEB A. Spatial modulation for gener- alised MIMO: challenges, opportunities, and implementation[J]. Pro- ceedings of the IEEE, 2014, 102(1): 56-103.
  • 4MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation[J]. IEEE Transactions on Vehieular Technology, 2008, 57(4): 2228-2241.
  • 5JEGANATHAN J, OHRAYEB, SZCZECINSKI L. Spatial modulation: optimal detection and performance analysis[J]. IEEE Communications Letters, 2008, 12(8): 545-547.
  • 6YOUNIS A, SINANOVIC S, RENZO D M. Generalised spheredecoding for spatial modulation[J]. IEEE Transactions on Communi- cations, 2013, 61(7): 2805-2815.
  • 7SUGIURA S, XU C, NG X, et al.Reduced complexity coherent versus non-coherent QAM-aided space-time shiit keying[J]. IEEE Transax- fions on Communications, 2011, 59(11): 3090-3101.
  • 8WANG J, JIA S, SONG J. Signal vector based detection scheme for spatial modulatien[J]. IEEE Communications Letters, 2012,16(1): 19-21.
  • 9RAJASHEKAR R, HARI K V S. Low complexity maximum likeli- hood detection in spatial modulation systems[EB/OL], http://arxiv. org/abs/1206.6190, 2012.
  • 10RAJASHEKAR R, HARI K V S, HANZO L. Reduced-complexity ML detection and capacity=optimized training for spatial modulation systems[J]. IEEE Transactions on Communications, 2014, 62(1): 112-125.

共引文献10

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部