期刊文献+

Different structural origins for different sized surface pits observed on a-plane GaN film 被引量:1

Different structural origins for different sized surface pits observed on a-plane GaN film
原文传递
导出
摘要 A correlation study between the observed surface morphology using high-resolution scanning electron microscopy(HRSEM) and the observed structural imperfections using transmission electron microscopy(TEM) has been conducted for a-plane Ga N. There are three different sized asymmetric surface pits: large pit of 500 nm–2 ?m in side length, medium pit of 50 nm in side length, and small pit with side lengths of less than 5 nm, which originate from incomplete island coalescence, screw dislocation, and partial dislocation(PD), respectively. Both screw dislocation and PD can produce pits on the free surface because they have a perpendicular line tension to the surface, which must remain in balance with the surface tension. The two types of dislocation lead to distinctive pit sizes because the PD has a smaller Burgers vector component along the dislocation line than the pure screw dislocation. A pit that is produced in the island-coalescing process is much larger than those caused by dislocations because island coalescence is a kinetic process that involves large-scale mass transportation, whereas the dislocation mediates the surface in the local area. These three types of surface pits sometimes interact with one another in space. The coalescence of the island determines the surface morphology at large scales, whereas the defects affect the details. A correlation study between the observed surface morphology using high-resolution scanning electron microscopy(HRSEM) and the observed structural imperfections using transmission electron microscopy(TEM) has been conducted for a-plane Ga N. There are three different sized asymmetric surface pits: large pit of 500 nm–2 ?m in side length, medium pit of 50 nm in side length, and small pit with side lengths of less than 5 nm, which originate from incomplete island coalescence, screw dislocation, and partial dislocation(PD), respectively. Both screw dislocation and PD can produce pits on the free surface because they have a perpendicular line tension to the surface, which must remain in balance with the surface tension. The two types of dislocation lead to distinctive pit sizes because the PD has a smaller Burgers vector component along the dislocation line than the pure screw dislocation. A pit that is produced in the island-coalescing process is much larger than those caused by dislocations because island coalescence is a kinetic process that involves large-scale mass transportation, whereas the dislocation mediates the surface in the local area. These three types of surface pits sometimes interact with one another in space. The coalescence of the island determines the surface morphology at large scales, whereas the defects affect the details.
机构地区 Microelectronic School
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期156-161,共6页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11204009&61204011) Beijing Municipal Natural Science Foundation(Grant No.4142005)
关键词 表面凹坑 结构缺陷 GAN薄膜 扫描电子显微镜 透射电子显微镜 螺型位错 起源 表面形貌 surface pits nonpolar Ga N screw dislocations partial dislocations Island coalescence
  • 相关文献

参考文献8

二级参考文献52

共引文献21

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部