期刊文献+

Sharpness of some properties of weighted modulation spaces 被引量:3

Sharpness of some properties of weighted modulation spaces
原文传递
导出
摘要 We obtain some optimal properties on weighted modulation spaces. We find the necessary and sufficient conditions for product inequalities, convolution inequalities and embedding on weighted modulation spaces. Especially, we establish the analogue of the sharp Sobolev embedding theorem on weighted modulation spaces. We obtain some optimal properties on weighted modulation spaces. We find the necessary and sufficient conditions for product inequalities, convolution inequalities and embedding on weighted modulation spaces. Especially, we establish the analogue of the sharp Sobolev embedding theorem on weighted modulation spaces.
出处 《Science China Mathematics》 SCIE CSCD 2016年第1期169-190,共22页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11371295 11026104 11471041 and 11471288)
关键词 SHARPNESS product inequalities convolution inequalities EMBEDDING WEIGHTED modulation spaces 空间 调制 加权 清晰度 Sobolev 性质 卷积不等式 嵌入
  • 相关文献

参考文献2

二级参考文献37

  • 1Benyi A, GrSchenig K, Okoudjou K A, et al. Unimodular Fourier multipliers for modulation spaces. J Funct Anal, 2007, 246:366-384.
  • 2Calderdn A P, Torchinsky A. Parabolic functions associated with a distribution, II. Adv Math, 1977, 24:101-171.
  • 3Chen J, Fan D, Sun L. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discret Contin Dyn Syst, 2012, 32:467-485.
  • 4Feichtinger H G. Modulation spaces on locally compact abelian groups. In: Krishna M, Radha R, Thangavelu S, eds. Technical Report, University of Vienna, 1983, Wavelets and Their Applications, 99-140. New Delhi: Allied Publishers, 2003.
  • 5Feichtinger H G. Modulation spaces: looking back and ahead. Sampl Theory Signal Image Process, 2006, 5:109-140.
  • 6GrSchening K. Foundations of Time-Frequency Analysis. Boston: BirkhEuser, 2001.
  • 7Kobayashi M. Modulation spaces Mp,q for 0 < p, q < oo. Funct Spaces Appl, 2006, 4:329-341.
  • 8Kobayachi M. Dual of modulation spaces. Funct Spaces Appl, 2007, 5:1-8.
  • 9Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo, 1981, 28:267-315.
  • 10Miyachi A, Nicola F, Riveti S, et al. Estimates for unimodular Fourier multipliers on modulation spaces. Proc Amer Math Soc, 2009, 137:3869-3883.

共引文献5

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部