期刊文献+

Multiple Limit Cycles Bifurcation From the Degenerate Singularity for a Class of Three-dimensional Systems

Multiple Limit Cycles Bifurcation From the Degenerate Singularity for a Class of Three-dimensional Systems
原文传递
导出
摘要 In this paper,bifurcation of small amplitude limit cycles from the degenerate equilibrium of a three-dimensional system is investigated.Firstly,the method to calculate the focal values at nilpotent critical point on center manifold is discussed.Then an example is studied,by computing the quasi-Lyapunov constants,the existence of at least 4 limit cycles on the center manifold is proved.In terms of degenerate singularity in high-dimensional systems,our work is new. In this paper,bifurcation of small amplitude limit cycles from the degenerate equilibrium of a three-dimensional system is investigated.Firstly,the method to calculate the focal values at nilpotent critical point on center manifold is discussed.Then an example is studied,by computing the quasi-Lyapunov constants,the existence of at least 4 limit cycles on the center manifold is proved.In terms of degenerate singularity in high-dimensional systems,our work is new.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期73-80,共8页 应用数学学报(英文版)
基金 Supported by Natural Science Foundation of China grants 11461021,11261013 Nature Science Foundation of Guangxi(2015GXNSFAA139011) the Scientific Research Foundation of Guangxi Education Department(ZD2014131) Guangxi Education Department Key Laboratory of Symbolic Computation and Engineering Processing
关键词 Quasi-Lyapunov constant degenerate singularity limit cycles bifurcation three-dimensional system Quasi-Lyapunov constant degenerate singularity limit cycles bifurcation three-dimensional system
  • 相关文献

参考文献15

  • 1Alvarez, M.J. Gasull, A. Monodromy and stability for nilpotent critical points. Int. 3. llturcat. 'taos., 15:1253-1265 (2005).
  • 2Alvarez, M.J., Gasull, A. Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl., 318:271 287 (2006).
  • 3Andreev, A.F., Sadovskii, A.P., Tsikalyuk, V.A. The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part. Diff. Equat., 39:155-164 (2003).
  • 4Carr, J. Applications of Centre Manifold Theory. Appl. Math. Sci. Vol. 35, Springer, New York, 1981.
  • 5Chavarriga, J., Giacomini, H., Gine, J., Llibre, J. Local analytic integrability for nilpotent centers. Ergodic Theory Dyn. Syst., 23:417 428 (2003).
  • 6Giacomini, H., Gine, J., Llibre, J. The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Diff. Equat., 227:406-426 (2006).
  • 7Gyllenherg, M., Yan, P. Four limit cycles for a 3D competitive Lotka-Volterra system with a heteroclinic cycle. Comput. Math. Appl., 58:649 669 (2009).
  • 8Hofoauer, J., So, J.W.-H. Multiple limit cycles for three dimensional Lotka-Volterra Equations. Appl. Math. Lett.. 7:65-70 (1994).
  • 9Li, F., Liu, Y., Wu, Y. Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a seventh degree Lyapunov system. Communications in Nonlinear Science and Numerical Simulation, 16: 2598- 2608 (2011).
  • 10Liu, Y., Li, J. Bifurcation of limit cycles and center problem for a class of cubic nilpotent system. Int. J. Bifurcat. Chaos, 20:2579-2584 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部