期刊文献+

Multiplicity and Uniqueness of Positive Solutions for Nonhomogeneous Semilinear Elliptic Equation with Critical Exponent

Multiplicity and Uniqueness of Positive Solutions for Nonhomogeneous Semilinear Elliptic Equation with Critical Exponent
原文传递
导出
摘要 In this paper,we consider the following problem {-Δu(x)+u(x)=λ(u^p(x)+h(x)),x∈R^N,u(x)∈h^1(R^N),u(x)〉0,x∈R^N,(*)where λ 〉 0 is a parameter,p =(N+2)/(N—2).We will prove that there exists a positive constant 0 〈 A* 〈 +00such that(*) has a minimal positive solution for λ∈(0,λ*),no solution for λ 〉 λ*,a unique solution for λ = λ*.Furthermore,(*) possesses at least two positive solutions when λ∈(0,λ*) and 3 ≤ N ≤ 5.For N ≥ 6,under some monotonicity conditions of h we show that there exists a constant 0 〈λ** 〈 λ* such that problem(*)possesses a unique solution for λ∈(0,λ**). In this paper,we consider the following problem {-Δu(x)+u(x)=λ(u^p(x)+h(x)),x∈R^N,u(x)∈h^1(R^N),u(x)〉0,x∈R^N,(*)where λ 〉 0 is a parameter,p =(N+2)/(N—2).We will prove that there exists a positive constant 0 〈 A* 〈 +00such that(*) has a minimal positive solution for λ∈(0,λ*),no solution for λ 〉 λ*,a unique solution for λ = λ*.Furthermore,(*) possesses at least two positive solutions when λ∈(0,λ*) and 3 ≤ N ≤ 5.For N ≥ 6,under some monotonicity conditions of h we show that there exists a constant 0 〈λ** 〈 λ* such that problem(*)possesses a unique solution for λ∈(0,λ**).
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期81-94,共14页 应用数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.11201132) Scientific Research Foundation for Ph.D of Hubei University of Technology(No.BSQD12065) supported by the Science Research Project of Hubei Provincial Department of education(No.d200614001)
关键词 nonhomogeneous semilinear elliptic problems multiplicity uniqueness nonhomogeneous semilinear elliptic problems multiplicity uniqueness
  • 相关文献

参考文献17

  • 1Amann, H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Review, 18:620-709 (1976).
  • 2Bahri, A., Lions, P.L. Morse index of some min-max critical points I. Comm. Pure Appl. Math., XLI: 1027-1037 (1988).
  • 3Brezis, H., Iqirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev expo- nents. Comm. Pure Appl. Math., 36:437-477 (1983).
  • 4Cao, D.M., Li, G.B., Zhou, H.S. Multiple solutions for nonhomogeneous elliptic equations involving critical sobolev exponent. Proc. Roy. Soc. Edinburgh Sect., 124A: 1177-1191 (1994).
  • 5Cao, D.M., Zhou, H.S. Multiple positive solutions of nonhomogeneous semilinear elliptic equations in N. Proc. Roy. Soc. Edinburgh Sect., 126A: 443-463 (1996).
  • 6Chen, K.J. Exact multiplicity results and bifurcation for nonhomogeneous elliptic problems. Nonlinear Analysis, 68:3246-3265 (2008).
  • 7Chen, K.J., Peng, C.C. Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems. J. Differential Equations, 240:58-91 (2007).
  • 8Deng, Y.B. Existence of multiple positive solutions for semilinear equation with critical exponent. Proc. Roy. Soc. Edinburgh Sect., 122A: 161-175 (1992).
  • 9Deng, Y.B., Li, Y. Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent. J. Differential Equations, 9:179-200 (1996).
  • 10Deng, Y.B., Ma, Y.M., Zhao, C.X. Existence and properties of multiple positive solutions for semilinear equation with critical exponent. Rocky Mountain J. Math., 35:1479 1512 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部