期刊文献+

Further Results on Mutually Nearly Orthogonal Latin Squares 被引量:1

Further Results on Mutually Nearly Orthogonal Latin Squares
原文传递
导出
摘要 Nearly orthogonal Latin squares are useful for conducting experiments eliminating heterogeneity in two directions and using different interventions each at each level.In this paper,some constructions of mutually nearly orthogonal Latin squares are provided.It is proved that there exist 3 MNOLS(2m) if and only if m ≥3 nd there exist 4 MNOLS(2m) if and only if m ≥4 with some possible exceptions. Nearly orthogonal Latin squares are useful for conducting experiments eliminating heterogeneity in two directions and using different interventions each at each level.In this paper,some constructions of mutually nearly orthogonal Latin squares are provided.It is proved that there exist 3 MNOLS(2m) if and only if m ≥3 nd there exist 4 MNOLS(2m) if and only if m ≥4 with some possible exceptions.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期209-220,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundations of China(Nos.11071207,11371308,11301457,11501181)
关键词 Latin square orthogonal nearly orthogonal holey Latin square orthogonal nearly orthogonal holey
  • 相关文献

参考文献9

  • 1Ge, G., Abel, R.J.R. Some new HSOLSSOMs of type h and lnu1. J. Combin. Designs, 9:435 444 (2001).
  • 2Li, P.C., Van Rees, G.H.3. Nearly orthogonal Latin squares. J. Combin. Math. Combin. Comput., 62: 13 24 (2007).
  • 3Rahgavarao, D., Shrikhande, S.S. Shrikhande, M.S. Incidence matrices and inequalities for combinatorial designs. J. Combin. Designs, 10:17-26 (2002).
  • 4Abel, R.J.R., Bennett, F.E., Ge. G. The existence of four HMOLS with equal sized holes. Des. Codes. Cryptogr., 26:7-31 (2002).
  • 5Brouwer, A.E., Van Rees,'G.H.J. More mutually orthogonal latin squares. Discrete Math., 39:263-281 (1982).
  • 6Bennett, F.E., Colbourn, C.J., Zhu, L. Existence of three HMOLS of type hn and 2n3t. Discrete Math., 160:49-65 (1996).
  • 7Colbourn, C.J., Dinitz, J.H. Handbook of Combinatorial Designs, 2nd Edition. Chapman & Hall/CRC, Boca Raton, FL, 2007.
  • 8D@nes, J., Keedwell, A.D. Latin squares and their applications. Academic Press, New York, London, 1974.
  • 9Dinitz, J.H., Stinson, D.R. MOLS with holes. Discrete Math., 44:145-154 (1983).

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部