期刊文献+

Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems 被引量:4

Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems
原文传递
导出
摘要 In this paper we study the existence of infinitely many periodic solutions for second-order Hamiltonian systems{ü(t)+A(t)u(t)+▽F(t,u(t))=0,u(0)-u(T)=u^·(0)-u^·(T)=0,where F(t,u) is even in u,and ▽(t,u) is of sublinear growth at infinity and satisfies the Ahmad-Lazer-Paul condition. In this paper we study the existence of infinitely many periodic solutions for second-order Hamiltonian systems{ü(t)+A(t)u(t)+▽F(t,u(t))=0,u(0)-u(T)=u^·(0)-u^·(T)=0,where F(t,u) is even in u,and ▽(t,u) is of sublinear growth at infinity and satisfies the Ahmad-Lazer-Paul condition.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期231-238,共8页 应用数学学报(英文版)
基金 Supported by NSF of Education Committee of Henan province(12B11026) NSF of Henan province(132300410341,122300410034,132300410056) Nanhu Scholars Program for Young Scholars of XYNU
关键词 second-order Hamiltonian systems periodic solutions Fountain theorem second-order Hamiltonian systems periodic solutions Fountain theorem
  • 相关文献

参考文献11

  • 1Bartsch, T., Willem, M. On an elliptic equation with concave and convex nonlinearities. Proc. Amer. Math. Soc., 123(11): 3555-3561 (1995).
  • 2Fei, G. On periodic solutions of superquadratic Hamiltonian systems. Electronic Journal of Differential Equations, 2002:1 12 (2002).
  • 3Han, Z. 27r-periodic solutions to ordinary differential systems at resonance. Acta Math. Sinica, 43(6): 639--644 (2000).
  • 4Mawhin, J. Willem, M. Critical Point Theory and Hamiltonian Systems. Springer, New York, 1989.
  • 5Meng, F., Zhang, F. Periodic solutions for some second order systems. Nonlinear Anal., 68(11): 3388- 3396 (2008).
  • 6Rabinowitz, P.H. Periodic solutions of Hamiltonian systems. Comm, P,lre Appl. Math., 31(2): 157 184 (1978).
  • 7Silva, E. Subharmonic solutions for subquadratie Hamiltonian systems. J. Differential Equations, 115(1): 120 145 (1995).
  • 8Tang, C. Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proc. Amer. Math. Soc., 126(11): 3263 3270 (1998).
  • 9Willem, M. Minimax Theorems. Birkhuser, Boston, 1996.
  • 10Zhao, F., Chen, C., Yang, M. A periodic solution for a second-order asymptotically linear Hamiltonian system. Nonlinear Anal., 70(11): 4021-4026 (2009).

同被引文献2

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部