期刊文献+

一类Q曲线的基本算术性质(英文)

Some basic arithmetic properties of a class of Q-curves
下载PDF
导出
摘要 本文对任意模4余3的正整数D构造了一类以判别式为-D的虚二次域的整数环为复乘的椭圆曲线,并将考察其基本性质,如有理扭点,自同态环以及模性等. In this paper, we construct elliptic curves with complex multiplications by the integer ring of K = Q(√-D)for any positive integer D congruent to 3 modulo 4 and establish their basic properties.Our results generalize those of Gross.
作者 任远
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期42-46,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 椭圆曲线 复乘 Q曲线 Elliptic Curve Complex multiplication Q-curve
  • 相关文献

参考文献10

  • 1Han D C. On the BSD conjecture of elliptic curvesEd2 :yz - x3 - d2x [J]. J Sichuan Univ: Nat SciEd, 2013, 50(3): 470.
  • 2She D M. On the computing of the Artin root num-ber of the elliptic curve Ed2 :y2 = x3 ~ d2 x over theGaussian integers[J]. J Sichuan Univ: Nat Sci Ed,2013,50(4) : 668.
  • 3Gross B,Atithmetic of elliptic curves with complexmultiplication[ M]. Lecture Notes in Mathematics776. Berlin: Springer Verlag, 1980.
  • 4Ren Y,On the construction of a class of Q-curve[J]. J Sichuan Univ: Nat Sci Ed, 2013,50(3): 455.
  • 5Tate J, Fourier analysis in number fields and HeckeZeta-functions [J]. Algebraic Number Theory,1967: 305.
  • 6Bump D,Automorphic forms and automorphic rep-resentations[M]. Cambridge : Cambridge Universi-ty Press, 1998.
  • 7Lang S,Cyclotomic field[M]. Berlin/New York:Springer-Verlag, 1978.
  • 8de Shalit E, The Iwasawa theory of elliptic curveswith complex multiplication: P-adic L-functions[M]. Salt Lake City: Acadmic Press? 1987.
  • 9Shimura G,Elliptic curves with CM as factors of Ja-cobians of modular fuctions [J]. Nagoya Math J,1971, 43’ 199.
  • 10Shimura G,Introduction to the artithmetic theory ofautomorphic functions[M]. Princeton j Princeton U-niversity Press, 1971.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部