期刊文献+

空间信息网络业务建模 被引量:3

Spatial Information Network Traffic Modeling
下载PDF
导出
摘要 网络业务建模可用于进行业务的预测,对于卫星这种带宽受限的通信系统尤为重要。针对空间信息网络业务的特点,介绍了一种分形对数正态噪声(FLN)与Poisson模型相叠加的模型。该模型既具有自相似性也有短相关性。其中分形对数正态噪声(FLN)是分形高斯噪声(FGN)的转变,其统计特性可以根据流量和数据源特性进行任意的调节,比较精确灵活。Poisson模型作为最经典的业务模型,适用于短相关性,易于实现。 Network traffic modeling may be used for traffic prediction and is particularly important for satel- lite communication system with limited bandwidth. In accordance with to the characteristics of spatial infor- mation network traffic, a model based on superposition of FLN (fractional log-normal noise) and Poisson process is presented. This model is of self-similarity and short-range dependence. FLN is transformed from FGN and its statistical characteristics may be easily according to flow and data source properties, thus it is precise and flexible. Poisson process, as the most classic traffic model, is suitable for short-range de- pendence and easy to implement.
出处 《通信技术》 2016年第1期73-77,共5页 Communications Technology
基金 国家自然科学基金(No.91338201 No.91438109 No.61401507)~~
关键词 分形对数正态噪声(FLN) Poisson模型 空间信息网络 FLN Poisson process spatial information network
  • 相关文献

参考文献8

  • 1Bhasin K, Hayden J. Developing Architectures and Tech- nologies for and Evolvable NASA space Communication In- frastructure [C]. The 22na AIAA International Communica- tions Satellite Systems Conference, Monterey,CA,2004.
  • 2Ilow J, Leung H. Self-Similar Texture Modeling Using FARIMA Processes with Applications to Satellite Images [J]. IEEE Trans on Image Processing, Vol. 10, No. 5, pp. 792-797, 2001.
  • 3Kihong Park and Walter Willinger. Self-Similar Network Traffic and Performance Evaluation [ M ]. New York: Wi- ley-Interscience, 2000.
  • 4Scherrer A, Larrieu N, Borgnat P, Owezarski P and Abry P. Non Gaussian and Long memory Statistical Modeling of Interact Traffic. IEEE Transaction on Dependable and Secure Computing, Vol. 4, No. 1, pp. 56-71, 2007.
  • 5Mandelbrot B B, Van Ness. Fractional Brownian Motion, Fractional Gaussian Noise and Application [ J ]. SIAM Review, 1968, 10(10):422-437.
  • 6Granger C W J, Joyeux R. An Introduce to Long-Memo- ry Time Series Models and Fractional Differencing, Jour- nal of Time Series Analysis, 1980,1 (2) :159-169.
  • 7Bonald T. The Erlang Model with Non-Poisson Call Arri- vals [ J ]. Acm Sigmetrics Performance Evaluation Re- view, 2006, 34( 1 ): 276-286.
  • 8魏伍,张更新,吕晶,杨晗竹.一种用于卫星网络的业务预测方法[J].通信技术,2015,48(11):1285-1289. 被引量:3

二级参考文献10

  • 1flow J, |~ung H. Self-Similar Texture Modeling using FA- RIMA Processes with Applications to Satellite hnages [ J ]. IEEE Trans on Image Processing, pp. 792-797,2001.
  • 2BoxGEP, Jenkins G M, Reinsel G C. Time Series Analy- sis: Forecasting and Control. Upper Saddle River, [ M ] NJ: Prentice-Hall, 1994.
  • 3YU Guo-qiang, ZHANG Chang-shui. Switching AR1MA Model based Forecasting for Traffic Flow [ C ]. Proc of ICASSP, 2004.
  • 4Yantai S, J Zhi-gang, Z l~ian-fang, Traffic Prediction u- sing FARIMA Models[ M ]. Proc of ICC, 1999.
  • 5Kolarov A, Atai A, Hui J. Application of Kalman Filter in lAigh-Speed Networks[ C]. Proe of Globecom,1994.
  • 6WU Zhao-hua and Norden E Huang. Ensemble Empirical Mode Decomposition: A Noi~- Assisted Data An',rlysis Method[ C]. Proceedings of the First International Confer- ence on the Advance of tlilbert-Huang Transform and Its Applications, National Central University ,Taiwan ,2006.
  • 7Yeh J R,Shieh J S and ttuang N E. Complementary Ensem- ble Empirical Mode Decomposition: A Novel Noise En- hanced Data Analysis Method [ J ]. Advances in Adaptive Data Analysis, vol. 2, Issue 2, pp. 135-156, 2010.
  • 8PAN Wen-tao. A New Fruit lqy Optimization Algorithm: Taking the Financial Distress Model as an Example. Knowl- edge-based System~[C], (in Press), 2011, (SC1).
  • 9Lee M, Shyu K, Lee P. tlardware hnplementation of EMD using DSP and FPGA for Online Signal Processing [J]. IEEE Trans on Industrial Electronics, 2011, 58 (6) : 2473-2481.
  • 10马容生.基于自适应神经网络的P2P流量检测研究[J].通信技术,2012,45(6):113-116. 被引量:2

共引文献2

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部