期刊文献+

车用交流发电机气动噪声优化 被引量:2

Optimization of aerodynamic noise for vehicle alternator
原文传递
导出
摘要 采用大涡模拟方法和FW-H声学模型对车用交流发电机气动噪声进行数值模拟,采用矢量合成方法优化交流发电机前扇叶分布角度,以低噪声、高流量与优化频谱结构降低单频旋转噪声为目标,分析了交流发电机气动噪声特性。分析结果表明:交流发电机噪声声压级、主要影响阶次与幅值的数值模拟与试验结果有很好的一致性;交流发电机气动噪声源为前后扇叶,总噪声的主要影响阶次为第6、8、10、12、18阶次,主要能量集中在1120-5 600Hz范围内;总噪声最大预测误差为6.97dB,第12、18阶次旋转噪声预测误差分别为2.30、3.30dB;前扇叶分布角度优化后总噪声最大降幅为3.10dB,平均降幅为2.58dB,第12、18阶次噪声平均降幅为5.80dB,降噪效果明显。 The large eddy simulation method and the FW-H acoustic model were adopted to simulate the aerodynamic noise of vehicle alternator.The vector composition method was used to optimize the front-blade distribution angle of alternator.Aiming at low noise,high flow and optimizing spectrum structure to reduce the single-frequency rotational noise,the aerodynamic noise properties of alternator were analyzed.Analysis result shows that the numerical simulation and test results have good consistencies on sound pressure level,main influencing orders and magnitudes of alternator noise.The aerodynamic noise sources of vehicle alternator are front and back blades.The main influencing orders of overall noise are orders 6,8,10,12 and 18,and the main energy centers on 1 120-5 600 Hz.The maximum prediction error of overall noise is 6.97 dB,and the prediction errors of rotational noise on orders 12 and 18 are 2.30 dB and 3.30 dB respectively.After optimizing the front-blade distribution angle of alternator,the maximum decreasing amount of overall noise is 3.10 dB,the average decreasing amount is 2.58 dB,the average decreasing amounts of noise on orders 12 and 18 are 5.80 dB,so the noise reduction effect is remarkable.
出处 《交通运输工程学报》 EI CSCD 北大核心 2015年第6期61-67,共7页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51475394 U1234208)
关键词 汽车工程 交流发电机 气动噪声 大涡模拟 矢量合成 扇叶 vehicle engineering alternator aerodynamic noise large eddy simulation vector composition fan blade
  • 相关文献

参考文献4

二级参考文献32

  • 1陈汉汛,孟丽君,赵雷刚.车用微电机的噪声分析方法[J].微特电机,2006,34(10):12-13. 被引量:4
  • 2[1]KOLMOGOROV A.N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds number,Dokl.Akad.Nauk SSSR 1941,30:9-13,(Reprinted in Proc.Royal Soc.Lond.A,1991,434:9-13,).
  • 3[2]DEARDOFF J.W.The use of subgrid transport equation in a three dimensional model of atmospheric turbulence [ J] ASME J .Fluid Engineering 1973,95:429.
  • 4[3]FATICA M.et al.Validation of large-eddy simulation in a plain asymmetrical diffuser[ R].Annual Brief,Center for Turbulence Research 1997:22.
  • 5[4]KRAVCHENKO A G,MOIN P.Numerical studies of flow over a circular cylinder at Reo = 3900 [J].Physics of Fluids,200012:403.
  • 6[5]VASILYEV O V et al.General class of commutative filters for LES in complex geometry [J].J Computational Physics 1998,146:82.
  • 7[6]SMAGORINSKY J.General circulation experiments with primitive equation [ R].Monthly Weather Review 1963,91-99.
  • 8[7]BARDINA J et al.Improved subgrid model for large-eddy simulation [ R] AIAA paper 1980,80-1357.
  • 9[8]MENEVEAU C,KATZ J.Scale-invariance and turbulence models for Large-Eddy-Simulation [ R ].Annual Review of Fluid Mechanics 2000,32:1.
  • 10[9]GERMANO M et al.A dynamic subgrid-scale eddy viscosity model [J].Physics of Fluid 1991,A3:1760.

共引文献84

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部