期刊文献+

基于非线性投资策略的看涨期权定价模型

Study on the Call Option Pricing Model under the Nonlinear Dynamic Investment Strategy
下载PDF
导出
摘要 Black-Scholes期权定价理论是假设持有人在期权的有效期内不进行股票交易,然而期权持有人买入期权后还可能在期权的有效期内进行交易的投资策略.假定按照非线性的投资策略持有股票,并给出期权的定价公式,在适当的条件下新期权定价公式退化为经典的定价公式,并且它的价格更便宜. Based on Black-Scholes option pricing theory,the classic option pricing theory assumes that the holder is not trading in the stock option within the validity period. In this paper,we consider the option holder after the call option may be traded within the validity period of the option of investment strategy. According to the investment strategy of nonlinear hold shares, we have obtained the pricing formulas, and the improved option pricing formula under the appropriate conditions for the degradation of the classical pricing formula.
出处 《西华师范大学学报(自然科学版)》 2015年第4期339-344,共6页 Journal of China West Normal University(Natural Sciences)
基金 西华师范大学基本科研业务费专项资金资助(14C004) 南充市社科规划一般规划(NC2013B027)
关键词 价值函数 看涨期权 期权的定价模型 股票期权 value function call option option pricing model stock option
  • 相关文献

参考文献8

  • 1BELLAMY N. Wealth optimization in an Incomplete Market Driven by A Jump-diffusion Process[J]. Journal of Mathematical E-conomics, 2001 ,35(2) :259 -287.
  • 2DIMITIES P,GEORGE S. Volatility options: Hedging Effectiveness,Pricing, and Model Error[J]. Journal of FuturesMarkets,2006,26(1 ) :1 -31.
  • 3FEHLE F. Theory and Evidence on Option Exchange Design [J]. Journal of Futures Markets, 2006,26 ( 6) :533 - 570.
  • 4CASSAGNES A,CHENA Y,OHASHI H. Department Path Integral Pricing of Wasabi Option in the Black - Scholes Model[J].Physica A 2014,413(11) : 1 -10.
  • 5萎礼尚.期权定价的数学模型和方法[M].第二版.北京:髙等教育出版社,2008:255-272,285 -311,74 -83.
  • 6WANG X, WANG L. Study on Black-Scholes Option Pricing Model Based on General Linear Investment Strategy ( Part I :put op-tion) [J]. International Journal of Innovative Compufing,Information and Confrol,2009,5 (8) :2169 -2188.
  • 7WANG X , WANG L. Study on the Black- Scholes Stock Put Option Model Based on Dynamic Investment Strategy[ C]. Proceed-ings of 2007 IEEE International Conference on Wireless Communications, Networking and Mobile Computing. IEEE Press,Shanghai. 2007:4128 -4131.
  • 8姜礼尚.数学物理方程讲义[M].第三版.北京:高等教育出版社,2006:116 - 118.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部