期刊文献+

介孔硅酸锌/氧化硅复合材料的制备与结构表征

Synthesis and structure characterization of mesoporous zinc silicate/silica composites
下载PDF
导出
摘要 以介孔氧化硅SBA-15作为硅源和辅助模板,将SBA-15与硝酸锌研磨混合,采用高温固相法制备出介孔硅酸锌/氧化硅复合材料。采用X射线衍射,透射电子显微镜,氮气吸、脱附技术对样品的结构进行表征。研究结果表明:SBA-15与引入到孔道中的硝酸锌发生固相反应生成硅酸锌,800℃的煅烧温度较传统固相反应温度有显著下降。硅酸锌镶嵌在孔壁上剩余的氧化硅中,不仅能够提高介观结构的稳定性,而且能够抑制硅酸锌发生相转变。硅酸锌/氧化硅复合材料具有二维六方有序介孔结构;含不同质量分数硅酸锌的硅酸锌/氧化硅复合材料的孔径为3.7~6.1nm,比表面积为360~640m^2/g。 Using mesoporous silica SBA-15 as both silicon source and assisted template,mesoporous zinc silicate/silica composites were prepared by calcining the grinding mixture of mesoporous silica SBA-15 and zinc nitrate.The samples were characterized by means of X-ray diffraction,transmission electron microscopy,and nitrogen adsorption-desorption isotherms.The results show that zinc silicate can be synthesized through the reaction between the mesoporous silica SBA-15 and the zinc nitrate encapsulated in mesopores.The reaction temperature of 800 ℃is lower than that of the traditional solid-state reaction.The formed zinc silicates are embedded in the remained silica in the walls of the pores,which can not only increase the stability of the mesoporous structure,but also inhibit the phase transformation of the zinc silicate.Zinc silicate/silica composites possess two-dimensional ordered hexagonal mesoporous structure.The mesoporous zinc silicate/silica composites with different zinc silicate weight percentages show the pore size between 3.7 and 6.1nm and the specific surface area between 360 and 640m-2/g.
出处 《中国科技论文》 CAS 北大核心 2015年第22期2685-2688,共4页 China Sciencepaper
基金 国家自然科学基金资助项目(51202103) 高等学校博士学科点专项科研基金资助项目(20121501120005)
关键词 硅酸锌 介孔结构 复合材料 固相反应 研磨 zinc silicate mesoporous structure composites solid-state reaction grinding
  • 相关文献

参考文献4

二级参考文献74

  • 1胡庆福,李保林,李国庭.医用三硅酸镁的制备[J].无机盐工业,1995,9(4):33-34. 被引量:11
  • 2Kresge C T, Leonowicz M B, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystaltemplate mechanism[J]. Nature, 1992,359(6397) : 710.
  • 3Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279(5350):548.
  • 4Kleitz F, Choi S H, Ryoo R Cubic Ia3d large mesoporous silica:Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chem Coramun, 2003, (17) : 2136.
  • 5Sakamoto Y, Kaneda M, Terasaki O, et al Synthesis and replication to platinum nanowires , carbon nanorods and carbon nanotubes[J]. Nature, 2000,408(6811) : 449.
  • 6Fan J, Gao F, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew Chem Int Ed,2003,42(27) :3146.
  • 7Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates [J]. Chem Rev, 2007, 107: 2821.
  • 8Schuth F. Non-siliceous mesostructured and mesoporous materials[J]. Chem Mater, 2001,13 : 3184.
  • 9Boettcher S W, Fan J, Tsung C K, et al. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials[J]. Ace Chem Res,2007,40: 784.
  • 10Ko C H, Ryoo R Imaging the channels in mesoporous molecular sieves with platinum[J]. Chem Commun, 1996, (21):2467.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部