期刊文献+

导群“较小”的极小非p交换p群的分类

Classification of Minimal Non-P-abelian P-groups with Smaller Commutator Subgroup
下载PDF
导出
摘要 若群G本身非p交换,但其所有真子群和真商群都p交换,则称群G为极小非p交换p群.设δ(G)为群G的p导群,则有|G':δ(G)|≥p.本文给出了|G':δ(G)|=p的极小非p交换p群的分类. A finite p- group G is called a minimal non-p- abelian p- groups,if G is not p- abelian and all proper sections of G are p-abelian. Let δ( G) be p-commutator subgroup of a p-group G,then | G': δ( G) | ≥ p.The minimal non-p-abelian p-groups with | G': δ( G) | = p is given.
作者 张巧红
机构地区 长治学院数学系
出处 《山西师范大学学报(自然科学版)》 2015年第4期15-18,共4页 Journal of Shanxi Normal University(Natural Science Edition)
基金 山西省教改研究项目(J2015111)
关键词 p交换p群 p导群 亚循环p群 p-abelian p-groups p-commutator subgroup metacyclic p-groups
  • 引文网络
  • 相关文献

参考文献5

  • 1Hobby C. A characteristic subgroup of apgroup[ J ]. Pacific J Math, 1960, (10) :853 -858.
  • 2Xu Ming yao. The power structure of finite pgroups [ J ]. Bull Austral Math Soc, 1987, (36) :1 - 10.
  • 3曲海鹏,张巧红.极小非3交换3群的分类[J].数学进展,2010(5):599-607. 被引量:2
  • 4Xu M Y. A theorem about p- groups and some consequences[ J ]. Chin Ann Math, 1984, 5B : 1 - 6.
  • 5李立莉,曲海鹏,陈贵云.内交换p-群的中心扩张(Ⅰ)[J].数学学报(中文版),2010,53(4):675-684. 被引量:5

二级参考文献14

  • 1Berkovich Y., Janko Z., Groups of Prime Power Order, Part 3, in Press, 2004.
  • 2Robinson D. J. S., A Course in the Theory of Groups, Berlin: Springer-Verlag, 1980.
  • 3Xu M. Y., An Introduction of the Theory of Finite Groups, Beijing: Scince Press, 1999.
  • 4Redei L., Das schiefe Product in der Gruppentheorie, Comment. Math. Helvet., 1947, 20: 225-267.
  • 5An L. J., Finite p-Groups All of Whose Non-abelian Proper Subgroups are Generated by Two Elements, Xi'an Master Thesis, Shanxi Normal University, 2006.
  • 6Holder O., Die Gruppen der Ordnungen p^3, pq^2, pqr, p^4, Math. Ann., 1893, 43: 301-412.
  • 7James R., The groups of order p6 (p≥3), Mathematics of Computation, 1980, 34: 613-637.
  • 8Xu M. Y., A theorem about p-groups and some consequences, Chin. Ann. Math., 1984, 5B: 1-6.
  • 9Hobby, C., A chaxacteristic subgroup of a p-group, Pacific J. Math., 1960, 10: 853-858.
  • 10Xu Mingyao, The power structure of finte p-groups, Bull. Austral. Math. Soc., 1987, 36: 1-10.

共引文献5

;
使用帮助 返回顶部