摘要
通过分析多项式函数的实重根及其导数的性质,结合罗尔定理和泰勒公式,给出了分析曲线f(x)=(x-a_1)^(k_1)(x-a_2)^(k_2)…(x-a_n)^(k_n)拐点的一般方法 ,指出了在实数域内可以分解的多项式函数全部拐点的分布范围.
By analyzing the real roots of polynomials and its derivative properties,combining the Rolle's theorem and the Taylor formula,we give a general method for analysis of the distribution range of inflection points on the curve f(x)=(x-a1)^(k1)(x-a2)^(k2)…(x-an)^(kn).Furthermore,our method can be successfully used to obtain the distribution of all inflection points for the polynomial function which can be factored in the real domain.
出处
《大学数学》
2015年第6期83-86,共4页
College Mathematics
基金
湖南文理学院教改项目(JGZC1302)
关键词
重根
拐点
泰勒公式
罗尔定理
multiple root
inflection point
Taylor formula
Rolle's theorem