期刊文献+

在线递推支持向量机的磁轴承转子位移预测

Rotor Displacement Prediction for Magnetic Bearings Based on On-Line Recursive Least Squares Support Vector Machine
下载PDF
导出
摘要 研究了一种基于在线递推支持向量机的三相交流主动磁轴承转子位移实时预测方法。阐述了算法在线学习原理,建立了转子位移在线预测模型。该模型通过在线学习,形成理想的支持向量机结构,实现等效电流、等效磁链与转子位移的非线性映射,达到磁轴承转子位移的在线预测。仿真和实验结果表明所提算法具备较高的预测精度和较强的适应性。 A rotor displacement real- time prediction method for active magnetic bearings using on- line recursive least squares support vector machine( LS- SVM) was proposed in this paper. The principle of on- line recursive LS-SVM was introduced,and the rotor displacement prediction model of a radial magnetic bearing was built. In this model,a better SVM structure was built through the on- line learning to form an efficient nonlinear mapping between suspension currents,magnetic flux linkage and rotor displacement,so that,it can realize the rotor displacement online prediction. To verify the effectiveness of the proposed method,some simulations and experiments were carried out. The findings show that the prediction model based on on- line recursive LS- SVM has a high precision and strong adaptability.
机构地区 南京工程学院
出处 《微特电机》 北大核心 2015年第12期5-9,共5页 Small & Special Electrical Machines
基金 国家自然科学基金项目(51507077 51377074 51307077) 江苏省高校自然科学基金项目(15KJB470005) 南京工程学院校级基金项目(YKJ201318 CKJA201407)
关键词 主动磁轴承 最小二乘支持向量机 位移预测 magnetic bearings least squares support vector machine displacement prediction
  • 相关文献

参考文献10

二级参考文献125

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部