期刊文献+

基于图像压缩传感的光学单点成像系统 被引量:2

Single-point Imaging System Based on Compressive Sensing Technique
下载PDF
导出
摘要 压缩传感理论(Compressive Sensing,简称CS)以远低于奈奎斯特采样频率对稀疏信号进行全局观测,通过少量观测值即可准确重构原始信号,突破了香农采样定理的瓶颈,使得宽带信号和高分辨率信号的采集成为可能。目前压缩传感理论大都停留在理论研究和仿真阶段,鲜有涉及将该理论硬件化进行实践应用。文中介绍了最小均方差线性估计(MMSE)算法,通过与常用重构算法的仿真重构对比,突出了MMSE算法的优越性,证明了该算法在低采样率下重构质量较高,且具有较好的实践应用潜力。并进一步搭建了光学单点成像系统对压缩传感理论进行应用研究,实验表明该系统成像效果良好,具有较好的应用价值。 Compressed Sensing(CS) represented compressible signals at a sampling rate significantly below the Nyquist frequency. Global observations of the sparse signal can be taken and the original signal can be accurately reconstructed from few observations. It broke through the bottleneck of Shannon sampling theorem and made it possible to deal with broadband and high resolution signals. The compressed sensing mostly stayed in the theoretical research and simulation phase,rarely involved the theory of hardware for practical application. The minimum mean square error linear estimate(MMSE) algorithm was introduced in this paper. Compared with the commonly used reconstruction algorithms,MMSE showed better reconstruction quality under low sampling rates and had great potential in real applications. Furthermore,a single-point imaging system was conducted to use CS in practice. It demonstrates the system works well and has great values in applications.
出处 《仪表技术与传感器》 CSCD 北大核心 2015年第1期88-91,共4页 Instrument Technique and Sensor
基金 国家自然科学基金资助项目(51005077) 福建省杰出青年基金资助项目(2011J06020) 教育部高学校博士学科点科研基金资助项目(博导类 20133514110008) 国家卫生和计划生育委员会科研基金项目(WKJ-FJ-27) 厦门特种设备检验院资助项目
关键词 压缩传感 稀疏性 重构算法 最小均方差线性估计方法 成像系统 compressive sensing sparsity reconstruction algorithms MMSE imaging system
  • 相关文献

参考文献15

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 2喻玲娟,谢晓春.压缩感知理论简介[J].电视技术,2008,32(12):16-18. 被引量:39
  • 3DONOHO D L. Compressed sensing.IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 4CAN DES E, ROMBERG J, TAO T. Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory,2006,52(2) :459-509.
  • 5CANDES E, ROMBERG J. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Comput Math, 2006,6 ( 2 ) : 227-254.
  • 6CANDES E.Compressive sampling. Proceedings of International Con- gress of Mathematicians. Madrid, 2006,3 : 1433-1452.
  • 7CANDES E, ROMBERG J. Practical signal recovery from randompro- jections [ EB/OL ]. http ://www. Acm. Cahech. edu/ emmanuel/pa- pers/ PracticalRecovery. pdf.
  • 8金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78
  • 9CHEN S S, DONOHO D L, SAUNDERS M A. Atomic Decomposition by Basis Pursuit.SIAM J.Sci.Comput, 1998,20( 1 ) :33-61.
  • 10KtNGSBURY N.Complex wavelets for shift invariant analysisand filte- ring of complex wavelets for shift invariant analysisand filtering of sig- nals.Applied and Computational Hamlonic Analysis, 2001,10 ( 3 ) : 234-253.

二级参考文献128

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2DONOHO D. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289-1306.
  • 3CANDES E. Compressive sampling[C]/[Proceedings of the International Congress of Mathematicians. Madrid, Spain: [s.n.], 2006:1433- 1452.
  • 4CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509.
  • 5TROPP J, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Information Theory, 2007, 53(12): 4655-4666.
  • 6ZOU J, GILBERT A C, STRAUSS M J, et al. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis[J]. Journal of Computational Physics, 2006, 211(2): 572 -595.
  • 7GAN Lu. Block compressed sensing of natural images[C]//Proceedings of the International Conference on Digital Signal Processing. [S.l.]: IEEE Press, 2007:403-406.
  • 8DONOHO D, TSAIG Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 9FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J-STSP,2007,1(4): 586-598.
  • 10TROP J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Trans. Information Theory, 2004, 50(10):2231-2242.

共引文献783

同被引文献50

  • 1Donoho D L. Compressed sensing[J]. IEEE Trans- actions on Information Theory, 2006, 52 (4): 1289-1306.
  • 2Candts E J, Romberg J, Tao T. Robust uncertainty principles, Exact signal reconstruction from highly.incomplete frequency information"J]. IEEE Transac- tions on Information Theory, 2006, 52(2) : 489-509.
  • 3Cand~s E J. Compressive sampling['J]. Proceedings of the International Congress of Mathematicians, Marta Sanz So16, 2006,17(2): 1433-1452.
  • 4Gan L. Block compressed sensing of natural images [C']. USA.. IEEE, 2007: 403-406.
  • 5Baraniuk R G. Compressive sensing ~J]. IEEE Sig- nal Processing Magazine, 2007, 24(4).. 118-121.
  • 6Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images ['J]. Nature, 1996, 381 (6583).607-609.
  • 7Mallat S G, Zhang Z. Matching pursuits with time- frequency dictionaries [-J]. Signal Processing, IEEE Transactions on, 1993, 41(12): 3397-3415.
  • 8Tropp J A, Gilbert A C. Signal recovery from ran- dom measurements via orthogonal matching pursuit [-J-]. Information Theory, IEEE Transactions on, 2007, 53(12): 4655-4666.
  • 9Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuitrJ3. Informa- tion Theory, IEEE Transactions on, 2012, 58 (2) : 1094-1121.
  • 10Needell D, Vershynin R. Uniform uncertainty princi- ple and signal recovery via regularized orthogonal matching pursuit[J-]. Foundations of computational mathematics, 2009, 9(3): 317-334.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部