期刊文献+

车用氨气传感器设计与性能实验 被引量:1

Design and Performance Experiment on Ammonia Gas Sensor for Vehicle
下载PDF
导出
摘要 以低温水热法制备了TiO_2-SnO_2复合纳米晶粒,采用提拉法涂敷于带有金电极的氧化铝陶瓷管表面形成敏感薄膜,设计了一种新型的薄膜式氨气传感器。在气体传感器静态测试装置上,测试了氨气传感器敏感特性、温度特性、动态响应、抗干扰和湿度特性。结果表明,以TS6为敏感薄膜的氨气传感器灵敏度为96.3%,动态响应时间为12 s,恢复时间分别为18 s。在汽车上连续使用12个月,响应衰减了6.8%,响应正常时间为6.3个月。表明了以TS6为敏感薄膜的氨气传感器可用于汽车选择性催化还原(SCR)系统氨气泄露在线检测。 TiO_2-SnO_2 composite nanocrystalline of ammonia gas sensor were prepared by the low temperature hydrothermal method.A new film-type ammonia gas sensor was designed with TiO_2-SnO_2 composite nanocrystallines transferred onto an alumina ceramic tube with Au electrodes by dip-coating method.These characteristic tests of ammonia gas sensors were carried out on the traits of sensitive performance,dynamic response,interference and stability in gas sensor static test system.The conclusion was got based on TS6 composite nanocrystalline.It shows that the sensitivity of ammonia gas sensor was 96.3%,the dynamic response time was 12 s,and the recover time was 18 s.The response value of ammonia gas sensor is attenuated about 6.8%,when ammonia gas sensor is applied continually on the automobile about 12 months,and its normal time is 6.3 months.These are ensured that ammonia gas sensor based on TS6 composite nanocrystalline can real-time detect the leaked ammonia concentration on selective catalytic reduction(SCR) system for vehicle.
出处 《仪表技术与传感器》 CSCD 北大核心 2015年第9期20-22,共3页 Instrument Technique and Sensor
基金 河南省科技厅重点攻关计划项目(112102210363) 河南省高等学校重点科研项目(15A470006) 河南城建学院大学生创新基金项目(2015甲E02502B和2015甲E02504B)
关键词 水热法 选择性催化还原 纳米晶粒 敏感薄膜 氨气传感器 在线检测 hydrothermal method selective catalytic reduction composite nanocrystalline sensitive thin film ammonia gas sensor on-line detection
  • 相关文献

参考文献11

二级参考文献40

  • 1阿布力孜.伊米提,迪丽努尔.塔力甫,艾尔肯.吐尔逊,Itoh Kiminori.高灵敏复合光波导在检测臭氧的应用研究[J].分析化学,2005,33(11):1663-1665. 被引量:27
  • 2孙万臣,朱昌吉,刘忠长,韩永强.车用柴油机EGR瞬态响应特性[J].汽车工程,2007,29(4):333-336. 被引量:8
  • 3JIANG Lei, GE Yun-shan, Asad Naeem Shah. 3 D Simulation Research on Urea-SCR DeNOx Catalyst for Diesel Engine. Journal of Beijing In- stitute of Technology,2009,18 (4) :428 - 432.
  • 4Buomsik S, Younqsoo C, Daeha H. Hydrogen effects on NOx emissions and brake thermal efficiency in a diesel engine under low-temperature and heavy-EGR conditions[J] International Journal of Hydrogen En- ergy,2011, 59(2) :2378-2385.
  • 5Qi Donghui, Michael L, Lee C F F. Effect of EGR and injection timing on combustion and emission char- acteristics of split injection strategy DI-diesel engine fueled with biodiesel [J]. Fuel, 2011, 90 (5) : 1884- 1891.
  • 6Friedrich I, Liu C S, Oehlerking D. Coordinated EGR-rate model-based controls of turbocharged diesel engines via an intake throttle and an EGR valve[J]. Vehicle Power and Propulsion, 2009. 4(1):247-251.
  • 7Carotta M C, Cervi A, Fioravanti A, Gherardi S, Giberti A, Vendemiati B, Vincenzi D, Sacerdoti M. Thin. Solid Films, 2011, 520(3):939-946.
  • 8Wagner T, Hennemann J, Kohl C D,Tiemann M. Thin Solid Films, 2011, 520(3) : 918-921.
  • 9Brunet J, Spinelle L, Ndiaye A, Dubois M, Monier G, Varenne C, Pauly A, Lauron B, Guerin K, Hamwi A. Thin Solid Films, 2011, 520(3): 971-977.
  • 10Mastelaro V R, Zllio S C, Silva L F, Pelissari P I, Bernardi M B, Guerin J, Aguir K. Sensors and Actuators B, 2013, 181(1) : 918-924.

共引文献19

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部