期刊文献+

改进递推最小二乘支持向量机及在过程建模中的应用

Improved Recursive Least Squares Support Vector Machine and Its Applications in Process Modeling
下载PDF
导出
摘要 针对流程工业存在多变量、非线性和数据动态性等问题,提出一种改进递推最小二乘支持向量机。该算法首先利用K均值算法(Kmeans)将训练样本分类,然后针对各聚类用人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)对最小二乘支持向量机参数进行优化,以避免人为选择最小二乘支持向量机参数的盲目性,最后在各聚类基础上建立相应在线递推最小二乘支持向量机模型。在加氢裂化反应过程蒸馏塔航煤干点的软测量建模研究中,表明所提出算法的有效性和优越性。 Considering the problem of multivariable, nonlinear and dynamic date in industry process, an improved recursive least squares support vector machine was proposed. First, the algorithm used Kmeans to divide the training sample into several clusters. Then, for each cluster, this paper separately used artificial fish algorithm to calculate the optimal parameters of least squares support vector machine, avoiding the blindness of selecting the parameters of least ,squares support vector machine. Finally, online recursive least squares support vector machine model in each cluster was set,up. In distillation tower of hydro cracking reaction, the soft measurement modeling of Jet fuel obtained highly precise and effective prediction.
出处 《仪表技术与传感器》 CSCD 北大核心 2015年第9期91-94,110,共5页 Instrument Technique and Sensor
关键词 聚类分析 人工鱼群算法 最小二乘支持向量 在线递推 软测量 cluster analysis artificial fish algorithm least squares support vector online recursive soft sensor
  • 相关文献

参考文献11

  • 1LIUNG L,HJALMARSSIN H,OHLSSON H. Four encounters with system identification.European Journal of Control, 2011,17 (5) :d49-471.
  • 2H1MMELBLAU D M.Accounts of experiences in the application of arti- ficial neural networks in chemical engineering.Industrial and Engineer- ing Chemistry Research, 2008,47 (16) : 5782-5796.
  • 3CHEN K, J J, WANG H,et al. Adaptive local kernel -based/earning for soft sensor modeling of nonlinear processes. Chemical Engineering Research and Design,2011,89 (10) : 2117- 2124.
  • 4SUYKENS J A K, VAN GESTEL T, DE BRABANTER J, et al. Least Squares Support Vector Machines. Singapore : World Scientific, 2002,2 ( 11 ) :285-288.
  • 5KADLEC P,GRBIC R, GABRYS B.Review of adaptation mechanisms for data-driven soft sensors.Computers & chemical Engineering, 2011, 35(1):1-24.
  • 6LIU Y ,WANG H Q,YU J,et al.Selective recursive kernel learning for online identification of nonlinear systems with NARX form. Journal of Process Control, 201 O, 20 (2) : 181 - 194.
  • 7FORTUNA L, GRAZIAN1 S, RIZZO A,et M.Soft sensors fi:r monitoringand control of industrial processes. Springer, Berlin, 2010.
  • 8TAYLOR J, CRiSTIANINI N. Kernel methods for pattern Cambridge,UK: Cambridge University Press,2004.
  • 9SUYKENS, VANDEWALE J. Least squares support vector classifiers.Neural Processing Letters, 1 999,9 ( 3 ) :293- 300.
  • 10黄磊,张书毕,王亮亮,张秋昭.粒子群最小二乘支持向量机在GPS高程拟合中的应用[J].测绘科学,2010,35(5):190-192. 被引量:28

二级参考文献5

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部