期刊文献+

YUV空间中基于稀疏自动编码器的无监督特征学习 被引量:16

Unsupervised Feature Learning with Sparse Autoencoders in YUV Space
下载PDF
导出
摘要 现有无监督特征学习算法通常在RGB色彩空间进行特征提取,而图像和视频压缩编码标准则广泛采用YUV色彩空间。为了利用人类视觉特性和避免色彩空间转换所消耗的计算量,该文提出一种基于稀疏自动编码器在YUV色彩空间进行无监督特征学习的方法。首先在YUV空间随机采集图像子块并进行白化处理,然后利用稀疏自动编码器进行无监督局部特征学习。在预处理阶段,针对YUV空间亮度和色度通道相互独立的特性,提出一种将亮度和色度进行分离的白化措施。最后用学习到的局部特征在大尺寸图像上进行卷积操作从而获得全局特征,并送入图像分类系统进行性能测试。实验结果表明:只要对亮度分量进行适当的白化处理,在YUV空间中的无监督特征学习就能够获得相当于甚至优于RGB空间的彩色图像分类性能。 Existing unsupervised feature learning algorithms usually extract features in RGB color space, but YUV color space is widely adopted in image and video compression standards. In order to take advantage of human visual characteristics and avoid the calculation consumption caused by color space conversion, an unsupervised feature learning approach in YUV space based on sparse autoencoders is presented. First, image patches in YUV space are randomly sampled and whitened, and then are fed into sparse autoencoders to learn local features in an unsupervised way. Considering the characteristic that the luminance channel and chrominance channels are independent in YUV space, a whitening method which treats the luminance and chrominance separately is proposed in the pre-processing step. Finally, features learned over local image patches are convolved with large-size images in order to get global feature activations. Global features are then sent into image classification systems for performance testing. Experimental results reveal that unsupervised feature learning in YUV space achieves similar or even slightly better performance in color image classification compared with that in RGB space as long as the luminance component is whitened properly.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第1期29-37,共9页 Journal of Electronics & Information Technology
基金 陕西省科技统筹创新工程重点实验室项目(2013SZS15-K02)~~
关键词 图像分类 无监督特征学习 稀疏自动编码器 卷积神经网络 深度学习 Image classification Unsupervised feature learning Sparse Auto Encoder(SAE) Convolutional neural network Deep learning
  • 相关文献

参考文献23

  • 1BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 2COATES A, NG A Y, and LEE H. An analysis of single-layer networks in unsupervised feature learning[C]. Preceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, 2011: 215-223.
  • 3KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Preceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012: 1097-1105.
  • 4MASCI J, Meier U, CIREAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Preceedings of the 21st International Conference on Artificial Neural Networks, Espoo, 2011: 52-59.
  • 5LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11.
  • 6VINCENT P, LAROCHELLE H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.
  • 7YIN H, JIAO X, CHAI Y, et al. Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications, 2015, 42(7): 3368-3380.
  • 8ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.
  • 9L?NGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11.
  • 10LIU H L, Taniguchi T, TAKANO T, et al. Visualization of driving behavior using deep sparse autoencoder[C]. Preceedings of the 2014 IEEE Intelligent Vehicles Symposium, Dearborn, 2014: 1427-1434.

二级参考文献46

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2胡昭华,樊鑫,梁德群,宋耀良.基于双向非线性学习的轨迹跟踪和识别[J].计算机学报,2007,30(8):1389-1397. 被引量:5
  • 3Zhao Chumlin, Zheng chong-xun, Zhao Min, et al.. Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic[J]. Expert Systems with Applications, 2011, 38(3): 1859-1865.
  • 4Bengio Y and Delalleuu O. On the expressive power of deep architectures[J]. Lecture Notes in Computer Science, 2011, 6925: 18-36.
  • 5Bengio Y. Deep learning of representations for unsupervised and transfer learning[C]. JMLR: Workshop and Conference Proceedings, Washington, USA, 2012, 27:17- 36.
  • 6Yu D and Li D. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154.
  • 7Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11( 2010): 3371-3408.
  • 8Lee T, Mumford D, Romero R, et al.. The role of the primary visual cortex in higher level vision[J]. Vision Research, 1998, 38(15-16): 2429-2454.
  • 9Wong W K and Sun M M. Deep learning regularized fisher mappingsIJ]. IEEE Transactions on Neural Networks, 2011, 22(10): 1668-1675.
  • 10Yah S C, Xu D, Zhang B Y, et al.. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.

共引文献51

同被引文献120

引证文献16

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部