期刊文献+

基于正则化的半监督等距映射数据降维方法 被引量:5

Data Dimensionality Reduction Method of Semi-supervised Isometric Mapping Based on Regularization
下载PDF
导出
摘要 针对等距映射(ISOMAP)算法无监督,不能生成显式映射函数等局限性,该文提出一种正则化的半监督等距映射(Reg-SS-ISOMAP)算法。该算法首先利用训练样本的标签样本构建K联通图(K-CG),得到近似样本间测地线距离,并作为矢量特征代替原始数据点;然后通过测地线距离计算核矩阵,用半监督正则化方法代替多维尺度分析(MDS)算法处理矢量特征;最后利用正则化回归模型构建目标函数,得到低维表示的显式映射。算法在多个数据集上进行了比较实验,结果表明,文中提出的算法降维效果稳定,识别率高,显示了算法的有效性。 This paper proposes Regularized Semi-Supervised ISOmetric MAPping(Reg-SS-ISOMAP) algorithm to solve the problem that ISOmetric MAPping(ISOMAP) algorithm is unsupervised and can not generate explicit mapping function. At first, this algorithm creates K-Connectivity Graph(K-CG) by labeled samples in training samples to get geodesic distance between approximate samples and takes it as feature vector substituting for original data. Then, it takes the geodesic distance as kernel and processes feature vector through semi-supervised regularization not Multi Dimensional Scaling(MDS) algorithm. At last, it constructs objective function by regularization regression model which is low dimension and explicit mapping. The algorithm is simulated on different data sets, results show that it is stable in dimension reduction and high recognition rate.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第1期241-245,共5页 Journal of Electronics & Information Technology
基金 浙江省自然科学基金(LZ14F030001 LY14F030009)~~
关键词 数据降维 流形学习 半监督学习 正则化 Data dimensionality reduction Manifold learning Semi-supervised learning Regularization
  • 相关文献

参考文献15

  • 1ROWEIS S and SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 2BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 3KIMA Kyoungok and LEE Daewon. Inductive manifold learning using structured support vector machine[J]. Pattern Recognition, 2014, 47(1): 470-479.
  • 4杜春,邹焕新,孙即祥,周石琳,赵晶晶.基于改进局部切空间排列的流形学习算法[J].电子与信息学报,2014,36(2):277-284. 被引量:9
  • 5YANG Xin, FU Haoying, ZHA Hongyuan, et al. Semi- supervised nonlinear dimensionality reduction[C]. Proceedings of 32rd International Conference on Machine Learning, New York, 2006: 1065-1072.
  • 6HANSEN T J, ABRAHAMSEN T J, and HANSEN L K. Denoising by semi-supervised kernel PCA preimaging[J]. Pattern Recognition Letters, 2014, 49: 114-120.
  • 7WALDER C, HENAO R, Morten M?rup, et al. Semi-supervised kernel PCA[EB/OL]. http://arxiv.org/abs/ 1008.1398v1.pdf, 2014. 12.
  • 8HE Xiaofei, CAI Deng, and HAN Jiawei. Learning a maximum margin subspace for image retrieval[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2): 189-201.
  • 9CAI Deng, HE Xiaofei, and HAN Jiawei. Semi-supervised discriminant analysis[C]. Proceedings of the 11th IEEE International Conference on Computer Vision. Piscataway, 2007: 1-7.
  • 10CAI Deng, HE Xiaofei, and HAN Jiawe. Isometric projection [C]. Proceedings of 22nd Conference on Artificial Intelligence, New York, 2007: 528-533.

二级参考文献41

  • 1Corduneanu A, Jaakkola T. On information regularization. Proceedings of the 19th Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI'03), Aug 7-10, 2003, Acapuleo, Mexico. San Francisco, CA, USA: Morgan Kaufmann, 2003:151-158.
  • 2Gideon S M, McCallum A. Simple, robust, scalable semi-supervised learning via expectation regularization. Proceedings of the 24th Annual International Conference on Machine Learning (ICML'07), Jun 20-24, 2007, Nashville, Corvallis, OR, USA. New York, NY, USA: ACM, 2007: 593-600.
  • 3Grandvalet Y, Bengio Y. Semi-supervised learning by entropy minimization. Advances in Neural Information Processing Systems: Proceedings of the 18th Annual Conference on Neural Information Processing Systems (NIPS'04), Dec, 13-18, 2004, Vancouver, Canada. Cambridge, MA, USA: Cambridge University Press. 2004:529-536.
  • 4Belkin M, Niyogi P, Sindhwani M. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 2006, 7:2399-2434.
  • 5Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems: Proceedings of the 15th Annual Conference on Neural Information Processing Systems (NIPS'01), Dec, 3-8, 2001, Vancouver, Canada. Cambridge, MA, USA: Cambridge University Press, 2001 : 585-591.
  • 6Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. Proceedings of the 18th Annual International Conference on Machine Learning (ICML'0I), Jun 28-Jul 1, 2001, Williamstown, MA, USA. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2001: 19-26.
  • 7Cai D, Wang X H, He X F. Probabilistic dyadic data analysis with local and global consistency. Proceedings of the 26th Annual International Conference on Machine Learning (ICML'09), Jun 14-18, 2009, Montreal, Canada. San Francisco, CA, USA: Morgan Kaufinann Publishers Inc, 2009:105-112.
  • 8Joachims T. Transductive learning via spectral graph partitioning. Proceedings of the 20th Annual International Conference on Machine Learning (ICML'03), Aug 21-24,-2003, Washington, DC, USA. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2003:290-297.
  • 9Subramanya A, Bilmes J. Soft-supervised text classification. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP'08), October 25-27, 2008, Honolulu, HI, USA. New York, NY, USA: ACM, 2008:1090-1099.
  • 10Subramanya A, Bilmes J. Entropic graph regularization in non-paramelric semi-supervised classification. Advances in Neural Information Processing Systems: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS'09), Dec 9-14, 2009, Vancouver, Canada. Cambridge, MA, USA: Cambridge University Press, 2009 : 1803-1811.

共引文献15

同被引文献33

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部