期刊文献+

非方的分数阶退化时滞微分方程的通解形式

The explicit representation of solutions for the general fractional degenerate differential equation with delay
下载PDF
导出
摘要 随着分数阶微分方程在物理、控制等领域的广泛应用,含有退化因素的分数阶微分方程已成为分数阶微分方程理论的研究热点.主要讨论分数阶退化时滞微分方程的系数矩阵在非方矩阵的情况下方程的转化问题和该方程的通解表达式.首先,利用广义逆矩阵理论给出了系数矩阵不是方阵的分数阶退化时滞微分方程的可以正常化的充要条件.其次,利用Laplace变换方法分别给出了非方的分数阶退化微分方程和非方的分数阶退化时滞微分方程的通解形式.所得结果推广了相关文献的相关结果. With the wide application of fractional differential system theory in the field of physics,control,etc.,fractional degenerate differential equations have become an important topic in the field of the fractional differential equation.In this paper,the transformation problem and the explicit representation of solution were considered for fractional degradation delay differential equations with non-square matrix.By using the generalized inverse matrix theory,sufficient and necessary conditions that guarantee the general fractional degenerate differential equation with delay were normalized.By combining the fractional Laplace transform method,the explicit representation of solution was derived for fractional degenerate(delay)differential equations.The results generalized the corresponding results of the relevant literature.
作者 张志信 蒋威
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2016年第1期1-6,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071001 11371027 11201248) 高校博士点专项科研基金资助项目(20123401120001) 安徽省自然科学基金资助项目(1208085MA13) 安徽大学博士科研启动经费资助项目(023033190142)
关键词 退化微分方程 分数阶 时滞 通解形式 degenerate differential equation fractional order delay the explicit representation of solution
  • 相关文献

参考文献17

  • 1OLDHAM K B, SPANIER J. The fractional calculus[M]. New York: Academic Press, 1974.
  • 2SAMKO S G, KILLBAS A A, MARICHEV O I. Fractional integrals and derivatives theory and applications I-M]. Amsterdam:Gordon and Breach Science Publisher, 1993.
  • 3PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
  • 4KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amterdam.-Elsevier Science B V, 2006.
  • 5DASS. Functional calculus for system identification and controls[M]. Berlin Heidelberg: Springer- Verlag, 2008.
  • 6LAKSHMIKANTHAM V, LEEALA S, VASUNDHARA D J. Theory of fractional dynamic systems[M]. Cambridge: Cambridge Academic Publishers, 2009.
  • 7DIETHELM V. The analysis of fractional equations[M]. New York: Springer, 2010.
  • 8KUNKEL P, MEHRMANN V. Differential algebraic equations[M]. Switzerland :European Mathematical Society, 2006.
  • 9DAI L. Singular control systems[M]. Berlin Heidelberg: Springer-Verlag, 1989.
  • 10CAMPBELL S L. Singular systems of differential equations[M]. Sanfrancisco London Melbourne: Pitman Advanced Publishing Program, 1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部