摘要
数据挖掘或数据分析在生物医学中与其他调查领域不同,因为在生物医学领域这些数据很复杂,他们资源不同,且每一个医师对同一个诊断记录都有他们自己的解释.分析医疗数据的特征,研究数据的清洗,目的是为了挖掘有价值的知识.实验显示,所提出的方法比朴素贝叶斯网络模式更有效.
Data mining or data analysis in biomedicine is different from other research fields,because the data in biomedical are heterogeneous,and they are from different sources.Moreover,each physician might have his own interpretation with the same clinical records.In this paper,we analyzed the features of medical data,and studied data cleaning for medical data in order to mine valuable knowledge.Experiments showed that the proposed method was more efficient than the baseline Bayesian network model.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2016年第1期23-29,共7页
Journal of Anhui University(Natural Science Edition)
基金
兰州市科技计划基金资助项目(2009-1-5)
甘肃省自然科学基金资助项目(1308RJZA111)
关键词
数据清理
医疗数据
知识挖掘
贝叶斯网络
data cleaning
medical data
knowledge mining
Bayesian network