期刊文献+

点焊机器人轨迹能耗模型及其优化算法研究 被引量:17

Study on Energy Consumption Model and Its Optimization Algorithm for Spot Welding Robot Trajectory
下载PDF
导出
摘要 提出一种点焊机器人最优能耗轨迹优化方法,将机器人关节空间中的关键点用五次多项式曲线连接,并基于机器人动力学建立了永磁交流伺服电机驱动的点焊机器人轨迹能耗模型。在考虑运动学、动力学及生产周期约束的情况下,采用蜜蜂进化型遗传算法求解了点焊机器人最优能耗轨迹。为保证算法全局寻优和收敛速度,构建了一种非线性适应度函数。仿真结果表明,与之前算法相比,求解效率更高,且最优能耗轨迹较最短时间轨迹能耗明显减少。 An approach for optimal trajectory planning of spot welding robot mampulators was presented. By linking two points in joint space with quintic polynomial curves, energy consumption mathematical model of spot welding robot trajectory driven by permanent magnet synchronous motor (PMSM) was established based on industrial robots dynamics. The method for searching for the opti- mal spot welding robot trajectory based on BEGA was put forward by taking consideration of the con- straints of robot kinematics, dynamics and the production cycle. In order to ensure the early global op- timization and late stage convergence speed of the algorithm, the nonlinear algebraic fitness function was proposed. By contrast with the shortest time trajectory optimization, the results indicate that en- ergy consumption of the energy optimal trajectory is reduced significantly and it also can obtain better solution in comparison with other methods.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2016年第1期14-20,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(71473077) 国家高技术研究发展计划(863计划)资助项目(2013AA040206) 湖南省自然科学基金资助项目(13JJA003)
关键词 点焊机器人 能耗 轨迹规划 蜜蜂进化型遗传算法 spot welding robot energy consumption trajectory planning bee evolutionary genet- ic Mgorithm(BEGA)
  • 相关文献

参考文献5

二级参考文献63

  • 1王小忠,孟正大.机器人运动规划方法的研究[J].控制工程,2004,11(3):280-284. 被引量:18
  • 2Chelmsford,Mass,杨进录.如何使机械运动部件控制最佳[J].电子工业专用设备,2005,34(3):25-27. 被引量:7
  • 3张红强,章兢,王耀南,刘健辰,徐磊.机器人关节空间B样条轨迹设计的混沌优化[J].电机与控制学报,2007,11(2):174-177. 被引量:10
  • 4LIAN G, SUN Z Q, MU C D. Optimal motion planning passing through kinematic singularities for robot arms[ C ]//IROS 2006.Beijing: IEEE Press, 2006:4349 -4351.
  • 5GARG D P, KUMAR M. Optimization techniques applied to multiple manipulators for path planning and torque minimization [ J ]. Engineering Applications of Artificial Intelligence, 2002, 15 (3 - 4): 241-252.
  • 6CAO B, DODDS G I, IRWIN G W. Constrained time-efficient and smooth cubic spline trajectory generation for industrial robots [J]. IEE Proceedings-Control Theory and Applications, 1997, 144(5) : 467 -475.
  • 7HIROAKI O, KEN H, MAKOTO I, et al. Improvement of trajectory tracking for industrial robot arms by learning control with B- spline[ C]//ISATP 2003. Piscataway: IEEE, 2003 : 264 -269.
  • 8LEE M. Evolution of behaviors in autonomous robot rising artificial neural network and genetic algorithm [ J]. Information Sciences, 2003, 155(2),43-60.
  • 9王洪涛,刘志远,裴润.基于Adams的6自由度机器人仿真系统研究[C].2003年全国系统仿真学术年会论文集,北京:中国系统仿真学会,2003:467-473.
  • 10CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.

共引文献278

同被引文献141

引证文献17

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部