期刊文献+

基于视觉的服装属性分类算法 被引量:4

Visual-Based Clothing Attribute Classification Algorithm
下载PDF
导出
摘要 提出了一种服装图像属性分类算法.针对服装图像噪声多的问题,采用人体部位检测技术定位服装关键部位并去除冗余信息,提高了属性分类的准确率.并提出了一种基于人体骨架与皮肤的特征提取算法,以较少的维数表达衣型特点,显著加快相关属性的分类速度.针对服装属性语义复杂、需求多样化的问题,为不同的属性构建了不同的SVM决策树模型,从而提高分类效率,并同时满足粗、细粒度的服装分类需求.实验结果验证了该方法在多种服装属性分类任务上的有效性. We propose an algorithm for classifying clothing image attributes.To handle the noise in clothing images,key parts of clothing are located by a well-trained human part detector,and redundant information is eliminated,by which means the accuracy of clothing attribute classification is improved.Additionally,a novel feature descriptor based on human skeleton and skin is also proposed.This descriptor describes clothing feature with fewer dimensions,which significantly speeds up classifiers of related attributes.To deal with the complex semantic of clothing attributes,different SVM Decision Tree models are built for different attributes,which improves the efficiency of classification and achieves the objective of both coarse-grained and fine-grained classification.Experiments demonstrate the effectiveness of the proposed algorithm on multiple clothing attribute classification tasks.
作者 刘聪 丁贵广
出处 《微电子学与计算机》 CSCD 北大核心 2016年第1期28-33,共6页 Microelectronics & Computer
基金 国家自然科学基金项目(61271394)
关键词 模式识别 图像属性分类 服装领域 SVM决策 pattern recognition image attribute classification clothing field SVM decision tree
  • 相关文献

参考文献8

  • 1Farhadi A, Endres I,Hoiem D, et al. Describing ob-jects by their attributes [C] // Computer Vision andPattern Recognition, 2009. CVPR 2009. IEEE Con-ference on. USA,Miami,IEEE, 2009 : 1778-1785.
  • 2Bourdev L,Maji S,Brox T,et al. Detecting people u~sing mutually consistent poselet activations [ M] //Computer Vision - ECCV 2010. Berlin, HeidelbergSpringer, 2010: 168-181.
  • 3LiuS,FengJ,Song Z, et al. Hi, magic closet, tell mewhat to wear! [C]//Proceedings of the 20th ACM in-ternational conference on Multimedia. USA,Dallas,ACM, 2012: 619-628.
  • 4Yang Y,Ramanan D. Articulated pose estimation withflexible mixtures-of-parts[C] // Computer Vision and Pat-tern Recognition (CVPR)> 2011 IEEE Conference oaUSA, Colorado Springs, IEEE, 2011 : 1385-1392.
  • 5Jones M J,Rehg J M. Statistical color models with ap-plication to skin detection[J]. International Journal ofComputer Vision, 2002,46(1) : 81-96.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 7徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27
  • 8Madzarov G,Gjorgjevikj D,Chorbev I. A Multi-classSVM Classifier Utilizing Binary Decision Tree[J]. In-formatica (Slovenia),2009,33(2) : 225-233.

二级参考文献5

  • 1Vladimir N.Vapnik著,张学工译.统计学习理论的本质.北京.清华大学出版社,2000.
  • 2边肇祺,张学工编著.模式识别.第二版,北京,清华大学出版社,2000.pp284-304
  • 3Angulo Cecilio Parra Xavier Català, Andreu. K-SVCR. A support vector machine for multi-class classification.Neurocomputing Volume. 55, Issue: 1-2, September, 2003,pp. 57-77.
  • 4J Weston and C Watkins. Multi-class support vector machines.Royal Holloway University of London, Technical Report,CSD-TR-98-04, May 20, 1998.
  • 5卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2303

同被引文献22

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部