期刊文献+

有界线性算子的单值扩张性质的摄动 被引量:1

The perturbation of the single valued extension property for bounded linear operators
原文传递
导出
摘要 设H是复可分无限维Hilbert空间,B(H)为H上的有界线性算子的全体。Hilbert空间H中一个算子T称作有单值扩张性质(简写为SVEP,记作T∈(SVEP)),若对任意一个开集U■C,满足方程(T-λI)f(λ)=0(λ∈U)的唯一的解析函数为零函数,其中C代表复数集。T∈B(H)称为满足单值扩张性质的紧摄动,若对任意的紧算子K∈K(H),T+K满足单值扩张性质。讨论了有界线性算子满足单值扩张性质的紧摄动的判定条件,同时给出了2×2上三角算子矩阵满足单值扩张性质的紧摄动的充要条件。 Let H be an infinite dimensional separable complex Hilbert space and B( H) the algebra of all bounded linear operators on H. An operator T∈B( H) is said to have the single-valued extension property( SVEP for brevity,write T∈( SVEP)),if for every open set U■C,the only analytic solution f: U→X of the equation( T- λI) f( λ) = 0 for allλ∈U is zero function on U,where C denotes the complex number set. T∈B( H) is said to have the perturbations of the single valued extension property if T + K have the single-valued extension property for every compact operator K ∈K( H). The perturbations of the single valued extension property for bounded linear operators are discussed,and the sufficient necessary condition for is given 2 × 2 upper triangular operator matrices for which the single valued extension property is stable under compact perturbations.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第12期5-9,14,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11471200 11371012)
关键词 单值扩张性质 紧摄动 the single-valued extension property compact perturbation spectrum
  • 相关文献

参考文献1

二级参考文献9

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).

共引文献37

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部