摘要
令G是广义矩阵代数。若φ:G→G是非线性Lie中心化子,在一些微弱的假设下,得φ=φ+τ,其中φ:G→G是可加的中心化子,τ:G→Z(G)对所有x,y∈G,满足τ[x,y]=0。作为应用,获得了因子von Neumann代数、三角代数上非线性Lie中心化子的刻画。
Let G be a generalized matrix algebra. Assume that φ: G→G is a nonlinear Lie centralizer. It is shown that,under some mild conditions,φ can be expressed as φ = φ + τ,where φ: G→G is an additive centralizer and τ:G →Z( G) is a mapping that vanishes at commutators. Based on the above results,the characterizations of nonlinear Lie centralizers on factor von Neumann algebras,triangular algebras are obtained.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2015年第12期10-14,共5页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11402199)
陕西省教育厅科学研究计划自然科学项目(2012JK0873
2012JK0883)