期刊文献+

(λ,μ)-反模糊粗糙子群

(λ,μ)-anti-fuzzy rough subgroup
原文传递
导出
摘要 引入(λ,μ)-反模糊子群与(λ,μ)-反模糊正规子群的概念,并研究了它们的基本性质。在此基础上,通过定义新的同余关系给出了(λ,μ)-反模糊粗糙子群与(λ,μ)-反模糊粗糙正规子群的概念,并刻画了它们的特征性质。 The definitions of( λ,μ) anti-fuzzy subgroup and( λ,μ) anti-fuzzy normal subgroup were introduced first and their properties were discussed. Then based on the newcongruence relation defined from( λ,μ) anti-fuzzy normal subgroup,the concepts of( λ,μ) anti-fuzzy rough subgroup and( λ,μ) anti-fuzzy rough normal subgroup were defined,and some properties were researched.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第12期23-27,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11471152)
关键词 同余关系 μ)-反模糊粗糙子群 μ)-反模糊粗糙正规子群 congruence relation (λ μ) anti-fuzzy rough subgroup (λ μ)-anti-fuzzy rough normal subgroup
  • 相关文献

参考文献3

二级参考文献17

  • 1张金玲,张振良.模糊粗糙子群[J].模糊系统与数学,2004,18(4):46-48. 被引量:8
  • 2高井贵,郭海刚,郭庆,张振良.群中模糊同余关系下的模糊粗糙群[J].模糊系统与数学,2005,19(3):62-66. 被引量:3
  • 3Rosenfeld A. Fuzzy groups[J]. J Math Anal Appl,1971, 35, 512-519.
  • 4Biswas R. Fuzzy subgroups and anti-fuzzy subgroups[J]. Fuzzy Sets and Systems, 1990, 35:121-125.
  • 5Yao Bing-xue. (λ,μ)-fuzzy normal subgroups and (λ,μ) -fuzzy quotient subgroups[J]. The Journal of Fuzzy Mathematics. 2005, 13: 695-705.
  • 6刘金良,阎瑞霞,姚炳学.反模糊子群的反模糊正规子群[J].聊城大学学报(自然科学版),2007,20(2):1-3. 被引量:3
  • 7邹开其.Fuzzy群的同态和Fuzzy阿贝尔群[J]长春光学精密机械学院学报,1982(03).
  • 8Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences,1982,11: 341-356.
  • 9Pawlak Z. Rough set:Theoretical Aspects of Reasoning about Data[M],Kluwer Academic Publishers,1991.
  • 10Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8:338-351.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部