期刊文献+

基于图像特征融合识别的中文签名鉴伪方法 被引量:1

Authenticity identification method for Chinese signature based on image feature fusion recognition
下载PDF
导出
摘要 针对现存的签名鉴伪方法有效性低、鲁棒性差的问题,提出一种基于图像特征自适应融合识别的签名鉴伪方法。该方法首先对签名图像进行预处理并提取签名常规性特征和签名鲁棒性特征,然后对签名字符书写形态、单方向笔画重量分布、字符像素点分布、图像字符倾斜角度等图像信息进行检测,通过分析检测结果自适应地改变各特征的权重系数进行特征融合。利用待鉴伪签名融合特征与数据库融合特征的向量夹角相似性度量结果对鉴伪样本做出判断。实验结果表明该方法在签名鉴伪中具有良好的有效性、鲁棒性。 In view of the low validity and poor robustness of the existing authenticity identification method for signature,this paper proposes a method to indentify the authenticity of signature,based on self-adaptive fusion of image features. First,a signature image is pretreated,and normal features and robustness of the image are taken. Then,the writing form of characters,weight distribution of unidirectional strokes,pixel dot distribution of characters,inclination angle of image characters and other image information are inspected. By analyzing the inspection results,this method automatically changes the weight coefficient of each feature and fuses the features. Then this method judges the measurement results of the vector angle similarity between the fused features of signature to be identified and fused features of the data base. Result of the experiment shows this method has good validity and robustness in identifying the authenticity of signatures.
出处 《应用科技》 CAS 2015年第6期10-14,共5页 Applied Science and Technology
基金 国家自然科学基金资助项目(41301448) 江苏省产学研前瞻性联合研究资助项目(BY2014041) 常州市科技支撑(社会发展)资助项目(CE20145038)
关键词 签名鉴伪 特征提取 图像信息检测 自适应特征融合 夹角相似性 authenticity identification of signature feature extraction image detection self-adaptive features fusion vector angle similarity
  • 相关文献

参考文献9

二级参考文献33

  • 1Mangasarian O L,David R.Musicant.Lagrangian Support Vector Machines[J].Journal of Machine Learning Research,2001,1:161-177.
  • 2候卫萍.基于频域分析法的离线手写签名纹理特征提取和验证[D].哈尔滨工程大学自动化学院,2005.
  • 3Plamondon R, Lorette G. Automatic signature verification and writer identification The state of the art [J]. Pattern Recognition, 1989, 22(2): 107-131.
  • 4Said H E S, TAN Tieniu, Baker K D. Personal identification based on handwriting [J]. Pattern Recognition, 2000, 33(1) : 149 - 160.
  • 5Bulacu M, Schomaker L. Text independent writer identification and verification using textural and allographic features [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2007, 29(4) : 701 - 717.
  • 6LIU Chenglin, DAI Ruwei, LIU Yingjian. Extracting individual features from moments for Chinese writer identification [C] // Proc of Int Conf Document Analysis and Recognition. Montreal: IEEE Press, 1995, 1 : 438 - 441.
  • 7WANG Xianliang, DING Xiaoqing, LIU Hailong. Writer identification using directional element features and linear transform [C] // Proc Int Conf on Document Anaiysis and Recognition. Edinburgh: IEEE Press, 2003, 2:942-945.
  • 8Yoshimura M, Yoshimura I, Kim H B. A text-independent off-line writer identification method for Japanese and Korean sentences [J]. IEICE Trans Inf and Syst, 1993, E76-D(4) : 454 - 461.
  • 9ZHU Yong, TAN Tieniu, WANG Yunhong. Biometric personal identification based on handwriting [C] //Proc 15th Int Conf Pattern Recognition. Barcelona: IEEE Press, 2000: 797-800.
  • 10HE Zhenyu, YOU Xinge, TANG Yuanyan. Writer identification of Chinese handwriting documents using hidden Markov tree model [J]. Pattern Recognition, 2008, 41(4): 1295 - 1307.

共引文献230

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部