期刊文献+

由可加分数布朗运动驱动的抛物型随机偏微分方程中极大似然估计量的中偏差原理

Moderate Deviation for Maximum Likelihood Estimator in the Parabolic Stochastic Partial Differential Equations Driven by Additive Fractional Brownian Motion
下载PDF
导出
摘要 利用鞅的极限定理,本文讨论了由可加分数布朗运动驱动的抛物型随机偏微分方程中未知参数极大似然估计量的中偏差原理,给出了速率函数的精确表达式,并将主要结果应用于若干例子. In this article, using the limit theory of martingales, we study the moderate deviation for maximum likelihood estimator of unknown parameter in the stochastic partial differential equation driven by additive fractional Brownian motion with Hurst parameter H ∈ [1/2, 1), and the rate function can be calculated. Moreover, we apply our main result to several examples.
作者 崔汝伟 蒋辉
出处 《应用概率统计》 CSCD 北大核心 2015年第6期572-581,共10页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(11101210) 中央高校基本科研业务费专项资金(NS2015074)资助
关键词 可加分数布朗运动 随机偏微分方程 极大似然估计量 中偏差原理 Additive fractional Brownian motion, stochastic partial differential equation, maximum likelihood estimator, moderate deviations, martingales.
  • 相关文献

参考文献15

  • 1Cialenco, I., Lototsky, S.V. and Pospi~il, J., As~nptotic properties of the maximum likelihood esti- mator for stochastic parabolic equations with additive fractional Brownian motion, Stochastics and Dynamics, 9(2)(2009), 169-185.
  • 2Huebner, M. and Rozovskii, B.L., On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE's, Probability Theory and Related Fields, 103(2)(1995), 143-163.
  • 3Tindel, S., Tudor, C.A. and Viens, F., Stochastic evolution equations with fractional Brownian mo~ tion, Probability Theory and Related Fields, 127(2)(2003), 186-204.
  • 4Norros, I., Valkeila, E. and Virtamo, J., An elementary approach to a Girsanov formnla and other analytical results on fractional Brownian motions, Bernoulli, 5(4)(1999), 571 587.
  • 5Jiang, H., Moderate deviation for parameter estimator in the stochastic parabolic equations with additive fractional Brownian motion, Stochastics and Dynamics, 14(3)(2014), 1450002 (17 pages).
  • 6Bercu, B. and Rouault, A., Sharp large deviations for the OrnsteimUhlenbeck process, Theory of Probability and Its Applications, 46(1)(2002), 1 19.
  • 7Bercu, B., Coutin, L. and Savy, L., Sharp large deviations for the fractional Ornstein-Uhlenbeck process, Theory of Probability and Its Applications, 55(4)(2011), 575--610.
  • 8Florens-Landais, D. and Pham, H., Large deviations in estimation of an Ornstein-Uhlenbeck model, Journal of Applied Probability, 36(1)(1999), 60~ 77.
  • 9Gao, F.Q., ,Jiang, H. and Wang, B.B., Moderate deviations for parameter estimators in fractional Ornstein-Uhlenbeck process, Aeta Mathematiea Scientia, 30(4)(2010), 1125 1133.
  • 10Guillin, A. and Liptser, R., Examples of moderate deviation principle for diffusion processes, Discrete and Continuous Dynamical Systems - Series B, 6(4)(2006), 803--828.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部