期刊文献+

纵向数据中基于偏自相关的均值协方差同时建模(英文)

Joint Modeling of Mean-Covariance Structures Based on Partial Autocorrelation for Longitudinal Data
下载PDF
导出
摘要 本文在纵向数据下提出一种均值-方差-相关矩阵的同时建模推断方法.通过应用偏相关系数,我们对相关系数矩阵进行无约束参数化,并且能够自动保证估计的相关系数矩阵满足正定性.在此基础上,我们对参数提出了一种回归推断方法,其具有简约性、可解释性和灵活性特点.实际数据分析和模拟研究表明了所提方法是有效的. In this paper, we propose a joint mean-variance-correlation modeling approach for longitudinal studies. By applying partial autocorrelations, we obtain an unconstrained parametrization for the correlation matrix that automatically guarantees its positive definiteness, and develop a regression approach to model the correlation matrix of the longitudinal measurements by exploiting the parametrization. The proposed modeling framework is parsimonious, interpretable, and flexible for analyzing longitudinal data. Real data example and simulation support the effectiveness of the proposed approach.
出处 《应用概率统计》 CSCD 北大核心 2015年第6期582-595,共14页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Science Foundation of China(11271347,11171321) Natural Science Foundation of Anhui Province(1308085MA02) the Fundamental Research Funds for the Central Universities
关键词 相关系数矩阵 同时建模 纵向数据分析 偏相关系数. Correlation matrix, joint modeling, longitudinal data analysis, partial autocorrelation.
  • 相关文献

参考文献22

  • 1Anderson, T.W., An Introduction to Multivariate Statistical Analysis (Second Edition), Wiley, New York, 1984.
  • 2Barnard, J., McCulloch, R. and Meng, X.L., Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage, Statistica Sinica, 10(4)(2000), 1281-1312.
  • 3Chen, Z. and Dunson, D.B., Random effects selection in linear mixed models, Biometrics, 59(4) (2003), 762-769.
  • 4Chiu, T.Y.M., Leonard, T. and Tsui, K.W., The matrix-logarithmic covariance model, Journal of the American Statistical Association, 91 (433) (1996), 198-210.
  • 5Daniels, M.J. and Pourahmadi, M., Modeling covariance matrices via partial autocorrelations, Journal of Multivariate Analysis, 100(10)(2009), 2352-2363.
  • 6Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.L., Analysis of Longitudinal Data (Second Edi- tion), Oxford University Press, 2002.
  • 7Joe, H., Generating random correlation matrices based on partial correlations, Journal of Multivariate Analysis, 97(10) (2006), 2177-2189.
  • 8Jennrich, R.I. and Schluchter, M.D., Unbalanced repeated-measures models with structured covari- ance matrices, Biometrics, 42(4)(1986), 805-820.
  • 9Kenward, M.G., A method for comparing profiles of repeated measurements, Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3)(1987), 296-308.
  • 10Leng, C., Zhang, W. and Pan, J., Semiparametric mean-covariance regression analysis for longitudinal data, Journal of the American Statistical Association, 105(489)(2010), 181-193.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部