期刊文献+

一类混合边界条件的裂缝散射问题及数值模拟 被引量:1

A Scattering Problem of a Crack with Mixed Boundary Conditions and Its Numerical Simulations
下载PDF
导出
摘要 考虑时谐电磁波对非常薄的无限长圆柱理想导体的散射问题,该散射体在水平截面上抽象为平面上的曲线段(即裂缝).假设曲线段是光滑的,且其2侧赋予不同的边界条件(混合边界条件),首先证明了散射问题解的唯一性;然后通过位势理论与积分方程方法,将问题转化为等价的奇异积分方程组并证明了解的存在性;最后,通过求解奇异积分方程组给出了混合边界裂缝散射问题的数值模拟. Consider a scattering problem of time-harmonic electromagnetic plane waves from a thin infinitely long cylindrical obstacle. The thin obstacle is a curve segment referred to as crack. Assuming that the crack is smooth,and both sides of the crack have different boundary conditions( mixed boundary conditions),the uniqueness of the solution is firstly given for the scattering problem. Then the scattering problem is transformed into an equivalent system of hypersingular integral equations by the potential theory and the integral equation method,and the existence of the solution is also proved. Finally,numerical simulations of the scattering problem for the mixed boundary crack are presented by solving the system of hypersingular integral equations.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期592-598,618,共8页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11161002) 江西省自然科学基金(20142BAB201008) 江西省青年科学基金(20132BAB211014) 江西省青年科学家培养计划(20122BCB23024)资助项目
关键词 HELMHOLTZ方程 散射问题 裂缝 混合边界条件 积分方程 Helmholtz equation scattering problem crack mixed boundary conditions integral equation
  • 相关文献

参考文献13

  • 1Kress R. Inverse scattering from an open arc [ J ]. Mathe- matical Methods in the Applied Sciences, 1995,18 (4) : 267-293.
  • 2Monch L. On the numerical solution of the direct scattering problem for an open sound-hard arc [ J ]. Journal of Com- putational and Applied Mathematics, 1996,71 ( 2 ) : 343- 356.
  • 3Wendland W L, Stephan E P. A hypersingular boundary integral method for two-dimensional screen and crack problems [J]. Archive for Rational Mechanics and Analy- sis,1990,112(4) :363-390.
  • 4Kress R, Lee K M. Integral equation methods for scattering from an impedance crack [ J ]. Journal of Computational and Applied Mathematics ,2003,161 ( 1 ) : 161-177.
  • 5Jijun Liu,P.A. Krutitskii,M. Sini.NUMERICAL SOLUTION OF THE SCATTERING PROBLEM FOR ACOUSTIC WAVES BY A TWO-SIDED CRACK IN 2-DIMENSIONAL SPACE[J].Journal of Computational Mathematics,2011,29(2):141-166. 被引量:1
  • 6严国政.具有混合裂缝散射问题的边界积分方程方法[J].数学物理学报(A辑),2011,31(5):1167-1175. 被引量:5
  • 7Wang H, Liu J. Numerical solution for the Helmhohz equa- tion with mixed boundary condition [ J ]. Numerical Math- ematics ( English Serers) ,2007,16( 3 ) :203.
  • 8Monch L. On the inverse acoustic scattering problem by an open arc: the sound-hard case [ J ]. Inverse Problems, 1997,13(5) :1379.
  • 9Cakoni F, Colton D. The linear sampling method for cracks [ J ]. Inverse Problems,2003,19 ( 2 ) :279.
  • 10Liu Jijun, Sini M. Reconstruction of cracks of ditlerctll types from far-field measurements [ J 5. Mathematical Methods in the Applied Sciences,2010,33 (8) :950-973.

二级参考文献21

  • 1Ammari H, Bao Gang, Wood A W. An integral equation method for the electromagnetic scattering from cavitys. Math Meth Appl Sci, 2000, 23:1057 -1072.
  • 2Cheng J, Hon Y C, Yamamoto M. Conditional stability estimations for a inverse boundary problem with non-smooth boundary in R3. Trans American Math Soc, 2001, 353:4123-4138.
  • 3Colton D L, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: Springer, 1998.
  • 4Colton D L, Kress R. Integral Equation Methods in Scattering Theory. New York: Springer-Verlag, Wiley, 1983.
  • 5Costabel M. Boundary integral operator on Lipschitz domains: elementary results. SIAM J Math Anal, 1988, 19:613-626.
  • 6Cakoni F, Colton D L, Peter Monk. The direct and inverse scattering problems for partially coated obstacles. Inverse Problems, 2001, 1T: 1997-2015.
  • 7Cakoni F, Colton D L. The linear sampling method for cracks. Inverse Problems, 2003, 19:279-295.
  • 8Cakoni F, Colton D L. Qualitative Methods in Inverse Scattering Theory. Series on Interaction of Mathematics and Mechanics. Berlin, Heidelberg: Springer, 2006.
  • 9Hsiao G, Wolfgang L W. Boundary Integral Equations. Applied Mathematical Sciences 164. Berlin: Springer, 2008.
  • 10Ikehata M. Reconstruction of the shape of the inclusion by boundary measurments. Commun Partial Diff Eq, 1998, 23:1459-1474.

共引文献4

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部