期刊文献+

基于分类字典学习的遥感图像超分辨率方法 被引量:1

Remote-sensing Image Super-resolution Algorithm Based on Classified Dictionary Learning
下载PDF
导出
摘要 传统的超分辨率方法存在图像重构时间长,重构质量有待改进的问题。因此,文章针对遥感图像对传统的超分辨率方法进行了改进。主要利用原始图像的局部二值模式(LBP)纹理特征对图像进行分类识别,学习分类字典,并使用对应类别字典对低分辨率图像进行超分辨率重构。该方法的优势在于既加快了重构速度,又有效改善了重构图像的质量。试验结果证明了该方法相对于传统方法的优越性。 The traditional super-resolution method has problems that the reconstruction time is too long and the reconstruction quality needs to be improved. Therefore, in view of the remote sensing image, this paper improves the traditional method of super-resolution. The method mainly uses the local binary pattern(LBP) texture feature of the original image to classify and recognize them, and uses the corresponding category dic- tionary of low-resolution to reconstruct the super-resolution image. The advantage of the method is speeding up the reconstruction and effectively improving the quality of the reconstruction image. The experimental result shows the superiority of this method compared with the traditional method.
出处 《航天返回与遥感》 北大核心 2015年第6期72-79,共8页 Spacecraft Recovery & Remote Sensing
基金 国家自然科学基金(61273251) 民用航天技术预研项目
关键词 遥感图像 超分辨率重建 稀疏表示 字典学习 分类 remote-sensing image super-resolution reconstruction sparse representation dictionarylearning classification
  • 相关文献

参考文献16

  • 1FARSIUS S, ROBINSON M, ELAD M. Fast and Robust Multiframe Super Resolution[J]. IEEE Trans. on Image Processing, 2004, 13(10): 327-134.
  • 2HARRIS J L. Diffraction and Resolving Power[J]. JOSA, 1964, 54(7): 931-933.
  • 3HUNT B R. Super-resolution of Imagery: Understanding the Basis for Recovery of Spatial Frequencies Beyond the Diffraction Limit[C].Proceedings of Information and Control, Adelaide, Australia, 1999: 243-248.
  • 4FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Learning Low-level Vision[J]. International Journal of Computer Vision, 2000, 40(1): 25-47.
  • 5CHANG H, YEUNG D Y, XIONG Y, Super-resolution Through Neighbor Embedding[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2004, 1(1): 275-282.
  • 6LI D, SIMSKE S, MERSEREAU R M. Single Image Super-Resolution Based on Support Vector Regression[C]. IEEE International Joint Conference on, 2007:2898-2901.
  • 7YANG J, WRIGHT J, HUANG T, et al. Image Super-resolution as Sparse Representation of Raw Image Patches[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
  • 8YANG J, WRIGHT J, HUANG T S, et al. Image Super-resolution Via Sparse Representation[J]. IEEE Transactions on Im- age Processing, 2010, 19(11): 2861-2873.
  • 9ELAD M. Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing[M]. Sprin- ger, 2010: 231-237.
  • 10HE Xiaofei, NIYOGI P. Locality Preserving Projections[C]. Advances in Neural Information Processing Systems. Vancou- ver, Canada, 2003:153-160.

二级参考文献45

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 2李全,王海燕,李霖.基于最大似然分类算法的土地覆盖分类精度控制研究[J].国土资源科技管理,2005,22(4):42-45. 被引量:13
  • 3朱孔凤,姜威,王端芳,张进,周贤.一种新的图像清晰度评价函数[J].红外与激光工程,2005,34(4):464-468. 被引量:66
  • 4盖强,殷福亮.二维Hilbert-Huang变换的分解方法研究[J].电子与信息学报,2006,28(4):610-613. 被引量:8
  • 5Zhang L, Huang X,Huang B,et al. A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery[ J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44 ( 10 ) :2950 - 2961.
  • 6Li P J,Cheng T,Guo J C. Multivariate Image Texture by Multivariate Variogram for Muhispectral Image Classification [ J ]. Photogrammetric Engineering and Remote Sensing,2009,75 ( 2 ) : 147 - 157.
  • 7Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the Grey- Level Co - ocurrence Matrix Method for Land - Cover Classification Using SPOT Imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4) :513 -519.
  • 8Gong P,Marceau D J,Howarth P J. A Comparison of Spatial Feature Extraction Algorithms for Land - Use Classification with SPOT HRV Data [ J]. Remote Sensing of Environment, 1991,40 : 137 - 151.
  • 9Haralick R M,Shanmugam K,Dinstein I. Texture Feature for Image Classification [ J ]. IEEE Transactions on Systems, Man and Cybermetics, 1973,3:610 - 625.
  • 10Ojala T, Pietikainen M, Maenpaa T. Muhimsolutin Gray Scale and Rotation Invariant Texture Analysis with Local Binary Pattern [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7) :971 - 987.

共引文献123

同被引文献2

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部