摘要
用交替方向Galerkin方法研究二维带有弱奇异核的偏积分微分方程的数值解,在空间方向上,采用线性有限元,时间方向上采用向后欧拉方法,积分项用一阶卷积求积逼近,该方法既具有交替方向存储量少,计算量低,又具有有限元高精度的特点.
Alternating direction implicit Galerkin method are formulated for the two-dimensional partial intergro-differential equations with a weakly singular kernel. These techniques are based on the finite element method in space and the backward Euler in time in combination with order one convolution quadrature approximating the integral term. The method has not only less storage and low computational characteristics, but also has high precision characteristics with finite element method.
出处
《湖南理工学院学报(自然科学版)》
CAS
2015年第4期15-19,共5页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金
湖南省大学生研究性学习和创新性实验计划项目(湘教通[2014]248号)
关键词
偏积分微分方程
交替方向隐式方法
向后欧拉方法
有限元方法
partial intergro-differential equations
alternating direction implicit method
backward Euler method
finite element method