期刊文献+

基于KPCA-WLSSVM的公共建筑能耗预测 被引量:1

Prediction for Energy Consumption of Public Building Based on KPCA-WLSSVM
下载PDF
导出
摘要 由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低。为了提高建筑能耗预测精度,建立了一种基于KPCA-WLSSVM的建筑能耗预测模型。利用核主元分析(KPCA)对输入变量进行数据压缩,消除变量之间的相关性,简化模型结构;进一步采用加权最小二乘支持向量机(WLSSVM)方法建立建筑能耗预测模型,同时结合一种新型混沌粒子群-模拟退火混合优化(CPSO-SA)算法对模型参数进行优化,以提高模型的预测性能及泛化能力。通过将KPCA-WLSSVM模型方法应用于某公共建筑能耗的预测中,并与WLSSVM、LSSVM及RBFNN模型相比,实验结果表明KPCA-WLSSVM模型方法能有效提高建筑能耗预测精度。 There are highly redundant features in affecting factors of building energy consumption,and the traditional method has low preditive accuracy. In order to improve the accuracy of building energy consumption forecasting,A prediction model based on KPCA-WLSSVM is proposed to forecast building energy consumption. The kernel principal component analysis( KPCA) method could not only solve the linear correlation of the input and compress data but also simply the model structure. A novel hybrid chaos particle swarm optimization simulated annealing( CPSO-SA)algorithm is applied to optimize the WLSSVM parameters to improve the learning performance and generalization ability of the model. Furthermore,the KPCA-WLSSVM model is applied to the energy consumption prediction for an office building,and the simulation results show that the KPCA-WLSSVM has better accuracy compared with WLSSVM model,LSSVM model and RBF neural network model,which is considered that the KPCA-WLSSVM is effective for building energy consumption prediction.
出处 《江南大学学报(自然科学版)》 CAS 2015年第6期710-716,共7页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(60804027 61374133) 福州大学科研基金项目(FZU-022335 600338 600567) 高校博士点专项科研基金项目(20133314120004)
关键词 建筑能耗 核主元分析 加权最小二乘支持向量机 模拟退火混合优化 energy consumption of building kernel principal component analysis WLSSVM CPSO-SA
  • 相关文献

参考文献16

  • 1WONG S L, WAN K K W, Lain T N T. Artificial neural networks for energy analysis of office buildings with daylighting [ J ]. Applied Energy, 2010,87 (2) : 551-557.
  • 2Azadeh A, Ghaderi S F, Tarverdian S, et al. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption [ J ]. Applied Mathematics and Computation ,2007,186 ( 2 ) : 1731-1741.
  • 3喻伟,李百战,杨明宇,杜秀媛.基于人工神经网络的建筑多目标预测模型[J].中南大学学报(自然科学版),2012,43(12):4949-4955. 被引量:30
  • 4Mathieu J L,Price P N, Kiliccote S, et al. Quantifying changes in building electricity use, with application to demand responsc [ J ]. IEE E Transactions on Smart Grid,2011,2 (3) :507-518.
  • 5Vapnik V. The Nature of Statistical Learning Theory[ M ]. New York : Springer,2000.
  • 6Cortes C, Vapnik V. Support vector networks [ J ]. Machine Learning, 1995,20 ( 3 ) :273-297.
  • 7DONG Bing, CAO Cheng, Lee S E. Applying support vector machines to predict building energy consumption [ J ]. Energy and Buildings, 2005,37 ( 5 ) : 545-553.
  • 8LI Qiong, MENG Qinglin, CAI Jiejin, et al. Applying support vector machine to predict hourly cooling load in the building[ J ]. Applied Energy,2009,86(10) :2249-2256.
  • 9Suykens J A K, Van G T, De B J, et al. Least Squares Support Vector Machines [ M ]. Singapore : World Scientific,2002.
  • 10LI Xuemei, SHAO Ming, DING Lixing, et al. Particle swarm optimization-based Ls-Svm for building cooling load prediction [ J ]. Journal of Computers ,2010,5 (4) :614- 621.

二级参考文献18

  • 1汪小旵,丁为民,罗卫红,戴剑锋.南方现代化温室能耗预测模型的建立与分析[J].南京农业大学学报,2006,29(1):116-120. 被引量:11
  • 2Kelesoglu O, Flrat A. Determination of loss of heat in brick wall and installation with artificial neural network[J]. Sci Eng J Flrat Univ 2006, 18(1): 133-141.
  • 3Yang J, Rivard H, Zmeureanu R. On-line building energy prediction using adaptive artificial neural networks[J]. Energyand Buildings, 2005, 37(12): 1250-1259.
  • 4Kalogirou S A, Bojic M. Artificial neural networks for the prediction of the energy consumption of a passive solar building[J]. Energy, 2000, 25(5): 479-491.
  • 5Gonzalez P A, Zamarreno J M. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network[J]. Energy and Buildings, 2005, 37(6): 595-601.
  • 6Olofson T, Andersson S. Long-term energy demand predictions based on short-term measured data[J]. Energy and Buildings, 2001, 33(2): 85-91.
  • 7Karatasou S, Santamouris M, Geros V. Modeling and predicting building's energy use with artificial neural networks: Methods and results[J]. Energy and Buildings, 2006, 38(8): 949-958.
  • 8Azadeh A, Ghaderi S F, Tarverdian S, et al. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption[J]. Applied Mathematics and Computation, 2007, 186(2): 1731-1741.
  • 9Nielson H R. Theory of the back propagation neural network[J]. IEEE UCNN, 1989(1): 693-696.
  • 10Montana D J, Davis L. Training feed-forward neutral networks using genetic algorithms[C]//Proceeding of the International Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan Kaufmann Publishers, 1989: 762-767.

共引文献29

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部