期刊文献+

基于信息弥散机制的图像显著性区域提取算法 被引量:3

An image saliency object detection algorithm based on information diffusion
原文传递
导出
摘要 为了更好提取图像的显著性区域,提出基于信息弥散机制的图像显著性区域检测算法。在所提算法中,首先将图像分割成超像素,根据图像中显著性区域频率变化比较大的特性,生成图像显著性区域的高频节点;然后针对高频节点利用凸包运算寻找显著性区域的种子节点,最后使用二阶高斯-马尔科夫随机场信息弥散方法在图像中对种子节点进行显著性区域信息扩散,得到图像的显著性区域。试验结果表明,利用二次规划求解每个数据之间的线性关系进行信息扩散,能够达到避免阈值选择和信息精准分类的效果,其结果优于同类的图像显著性区域检测算法。 In order to better extract salient regions in images,we proposed an image salient region detection algorithm based on information diffusion mechanism. The proposed algorithm was divided into three steps. First,we segmented an input image into superpixels which were represented as the nodes in a graph. The node with high frequency was generated by the characteristics of the salient regions. Then,according to high-frequency nodes,convex hull computation was used to generate the saliency seeds of the salient object area. Finally,based on the seeds obtained by convex hull computation,the second-order Gaussian-Markov random fields were used to diffuse the information from saliency seeds to others,thereby forming the saliency region for a given image. The experimental results showed that the quadratic programming solution exploited to compute the weights between the nodes can effectively avoid threshold selection and enhance robustness accordingly. In addition,the proposed method performed better than the other state-of-the-art methods.
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第6期1-6,共6页 Journal of Shandong University(Engineering Science)
基金 江苏省高校自然科学研究面上资助项目(14KJB520006)
关键词 显著性检测 信息弥散 高频节点 凸包运算 高斯-马尔科夫随机场 saliency detection information diffusion high frequency node convex hull computation Gaussian-Markov random fields
  • 相关文献

参考文献21

  • 1RUTISHAUSER U, WALTHER D, KOCH C, et al. Is bottom-up attention useful for object recognition[C]//Proceedings of the 2004 CVPR, Washington,USA:IEEE Computer Society Conference, 2004:37-44.
  • 2李春雷,张兆翔,刘洲峰,廖亮,赵全军.基于纹理差异视觉显著性的织物疵点检测算法[J].山东大学学报(工学版),2014,44(4):1-8. 被引量:14
  • 3NAVALPAKKAM V, ITTI L. An integrated model of top-down and bottom-up attention for optimizing detection speed[C]//Proceedings of the 2013 CVPR, Oregon,USA:IEEE Computer Society Conference, 2006:2049-2056.
  • 4王秀芬,王汇源,王松.基于背景差分法和显著性图的海底目标检测方法[J].山东大学学报(工学版),2011,41(1):12-16. 被引量:6
  • 5GUO C, ZHANG L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1):185-198.
  • 6ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.
  • 7MA Y F, ZHANG H J. Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the eleventh ACM, New York,USA:International Multimedia Conference, 2003:374-381.
  • 8REN Y, ZHOU J, WANG Z, et al. An improved saliency detection for different light conditions[J]. KSII Transactions on Internet and Information Systems(TIIS), 2015, 9(3):1155-1172.
  • 9任永峰,周静波,王志坚.基于光线变化的显著性区域提取[J].南京大学学报(自然科学版),2015,51(1):125-131. 被引量:3
  • 10XIE Y, LU H, YANG M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2012, 22(5):1689-1698.

二级参考文献58

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2ZHANG Y, KISELEWICH S J, BAUSON W A, et al. Robust moving object detection at distance in the visible spectrum and beyond using a moving camera[C]//Computer Vision and Pattern Recognition Workshop. New York:[s. n. ] , 2006:131-138.
  • 3STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE Computer Society Press, 1999, 2:246-252.
  • 4LAURENT I, CHRISTOF K, ERNST N. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254-1259.
  • 5DIRK W. Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics [ D ]. California: California Institute of Technology Pasadena, 2006.
  • 6MA Yufei, HUA Xiansheng, LU Lie, et al. A generic framework of user attention model and its application in video summarization [J]. IEEE Transactions on Multimedia, 2005, 7 ( 5 ) : 907-919.
  • 7LIU Arian, ZHANG Yongdong, SONG Yan, et al. Human attention model for semantic scene analysis in movies [ C ]//Proceedings of IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2008: 1473-1476.
  • 8SIAGIAN C, LAURENT I. Biologically inspired mobile robot vision localization [ J]. IEEE Transactions on Robotics, 2009, 25(4): 861-873.
  • 9DIRK W, EDGINGTON D R, CHRISTOF K. Detection and tracking of objects in underwater video [ C ]//IEEE Proceedings Computer Vision and Pattern Recognition. Washington D C: IEEE Computer Society Press, 2004: 61-73.
  • 10DIRK W, CHRISTOF K. Modeling attention to salient proto-objects [ J ]. Neural Networks, 2006, 19 ( 9 ) : 1395-1407.

共引文献18

同被引文献9

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部