期刊文献+

ALE方法中一种新的二阶保界守恒重映算法 被引量:2

A new second-order bound-preserving conservative remapping algorithm in the ALE method
下载PDF
导出
摘要 在用拉格朗日格式求解流体力学问题时,随着时间的推进,计算网格会扭曲变形,影响格式精度,甚至导致计算中断。因此,要在网格变形较大时进行网格重分和物理量重映,以保证网格质量和格式精度。针对间断有限元方法求解流体力学问题的二阶拉格朗日格式,给出了一种守恒重映算法。该重映算法包括两步:第一步是用已有重映方法计算新网格上的单元平均值,并用相应修补算法对单元平均值进行调整,保证单元平均值的保界性;第二步是由已得到的新单元平均值重构出新网格上分片一次多项式,再使用Van Leer限制器对新网格上的梯度进行限制,使之不出现新的极值。最后用数值算例表明了该重映算法的保界性和二阶收敛性。 When the Euler equations are solved using Lagrangian scheme,the fact that computational cells exactly follow fluid particles may result in severe grid deformation,even more cause inaccuracy and even breakdown of the computation in some cases.So it needs to rezone meshes and remap physical quantities when the deformation of computational grid is severe.Based on the second-order Lagrangian schemes that using the discontinuous Galerkin method to solve the Euler equations,a conservative remapping scheme is proposed.This remapping scheme has two steps:the first step is using the existing remapping method to obtain the approximate average values in the new cells,then using the repair algorithm to ensure the average values in the range of local bounds;the second step is using the average values to reconstruct the linear polynomial in the new cell,and using Van Leer limiter to limit the gradient of this linear polynomial to ensure no new extremum.Results of some numerical tests are presented and demonstrate that this remapping scheme is second-order accurate,conservative and bound-preserving.
出处 《空气动力学学报》 CSCD 北大核心 2015年第6期765-771,786,共8页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11571002) 中国工程物理研究院科学基金(2013A0202011 2015B0101021) 国防基础科研计划资助(B1520133015) 郑州轻工业学院博士科研基金(2014BSJJ089)
关键词 守恒算法 重映 ALE方法 conservative algorithm remapping ALE methods
  • 相关文献

参考文献23

  • 1Li Z Z, Yu X J, Jia Z P. The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions[J]. Computers & Fluids, 2014, 96(C):152-164.
  • 2Zhenzhen Li,Xijun Yu,Jiang Zhu,Zupeng Jia.A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions[J].Communications in Computational Physics,2014,15(4):1184-1206. 被引量:2
  • 3李珍珍,蔚喜军,赵国忠,冯涛.RKDG有限元法求解一维拉格朗日形式的Euler方程[J].计算物理,2014,31(1):1-10. 被引量:5
  • 4Margolin L G. Introduction to "an arbitrary-Lagrangian-Eulerian computing method for all flow speeds"[J]. Journal of Computational Physics, 1997, 135:198-202.
  • 5Loubere R, Maire P H, Shashkov M, et al. Re ALE:a reconnection based arbitrary Lagrangian Eulerian method[J]. Journal of Computational Physics, 2010, 229:4724-4761.
  • 6Dukowicz J K, Kodis J W. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations[J]. Siam Journal on Scientific & Statistical Computing, 1987, 8:305-321.
  • 7Miller D S, Burton D E, Oliviera J S. Efficient second order remapping on arbitrary two dimensional meshes[R]. UCRL-ID-123530. Livermore, CA:Lawrence Livermore National Laboratory, 1996.
  • 8Grandy J. Conservative remapping and region overlays by inter-secting arbitrary polyhedra[J]. Journal of Computational Physics, 1999, 148:433.
  • 9Dukowicz J K, Padial N T. Accurate REMAP3D:a conserv-ative three-dimensional remapping code[R]. LA-12136-MS. Los Alamos, NM:Los Alamos National Laboratory, 1991.
  • 10Mosso S J, Burton D E, Harrison A K, et al. A second order two and three-timensional temap method[R]. LA-UR-98-5353. Los Alamos, NM:Los Alamos National Laboratory, 1998.

二级参考文献16

  • 1Caramana E J,Burton D E,Shashkov M J. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J].J Comput Phys,1998.227-262.
  • 2Von Neumann J,Richtmyer R D. A method for the calculation of hydrodynamics shocks[J].Journal of Applied Physics,1950.232-237.
  • 3Campbell J C,Shashkov M J. A tensor artificial viscosity using a mimetic finite difference algorithm[J].J Comput Phys,2001.739-765.
  • 4Cheng J,Shu C W. A high-order ENO conservative Lagrangian type scheme for the compressible Euler equations[J].J Comput Phys,2007.1567-1596.
  • 5Cheng J,Shu C W. A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations[J].Communications in Computational Physics,2008.1008-1024.
  • 6Maire P H,Abgrall R,Breil J. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J].SIAM Journal on Scientific Computing,2007.1781-1824.
  • 7Maire P H,Breil J. A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems[J].International Journal for Numerical Methods in Fluids,2007.1417-1423.
  • 8Maire P H. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes[J].J Comput Phys,2009.2391-2425.
  • 9Hui W H,Li P Y,Li Z W. A unified coordinate system for solving the two-dimensional Euler equations[J].J Comput Phys,1999.596-637.
  • 10Jia Z P,Zhang S D. A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two dimensions[J].J Comput Phys,2011.2496-2522.

共引文献5

同被引文献28

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部