期刊文献+

基于视觉的疲劳驾驶检测算法 被引量:3

An algorithm of fatigue driving detection based on computer vision
下载PDF
导出
摘要 在疲劳驾驶检测中,眉毛、眼睛等相似物体常常会引起误判。为了减小误检率,文章提出了一种基于扩展Haar-like特征的AdaBoost算法,并将其应用于对人眼的准确检测中。通过近红外摄像头获取驾驶员的脸部图像,减少光线对检测方法的影响;利用AdaBoost算法直接检测睁眼区域;计算连续闭眼的帧数占总帧数的比值,判定驾驶员的疲劳状态。在白天、夜晚以及光线突变的条件下测试的结果表明,该方法准确率较高,并且在光照和人脸角度变化的条件下,能准确地定位人眼区域,对其进行疲劳检测。 In fatigue driving detection, the similitude of eyes and other objects can always cause the misjudgment. In order to reduce the false detection rate, an AdaBoost algorithm based on the extended Haar-like features is proposed. Firstly, the facial images of drivers are captured by the IR CCD camera to reduce the effect of illumination. Then the open eye region is located by AdaBoost algorithm. Finally, the ratio of consecutive shuteye frames to total frames is calculated to judge the driver's fatigue status. In real driving conditions, the method is verified in the daytime, at night and in different lighting conditions. The experimental results show that this approach can accurately locate the eye region and detect the fatigue status under varying light and facial angle conditions.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第12期1623-1627,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61371155 61174170) 安徽省科技攻关计划资助项目(1301b042023)
关键词 疲劳驾驶 HAAR-LIKE特征 ADABOOST算法 人眼检测 PERCLOS方法 fatigue driving Haar-like feature AdaBoost algorithm eye detection PERCLOS
  • 相关文献

参考文献12

  • 1NHTSA. Vehicle safety research note: advanced countermeasures[ EB/OL]. ( 2014-02-20 )[2014-08-02]. http:// www. nhtsa, gov/DOT/NHTSA/NVS/Crash Avoidance/ Technical Publications/ 2014 / 81188 7--A.
  • 2Krajewski J, Sommer D, Trutschel U, et al. Steering wheel behavior based estimation of fatigue[C]//Proceedings of the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design. Germany: University of Applied Sciences Schmal-kalden,2009: 118--124.
  • 3Hsu C M, Lian F L, Huang C M, et al. Heart rate variability signal processing for safety driving using Hilbert-Huang transform[C]//International Symposium on Computer, Consumer and Control. IEEE, 2014: 434--437.
  • 4Wang Y T, Huang K C, Wei C S, et al. Developing an EEG-based on-line closed-loop lapse detection and mitigation system[J]. Frontiers in Neuroscience, 2014, 8 (8): 321.
  • 5Hemadri V B, Kulkarni U P. Detection of drowsiness using fusion of yawning and eyelid movements[M]//Advances in Computing, Communication, and Control. Berlin: Springer,2013: 583--594.
  • 6Chang T H, Chen Y R. Driver fatigue surveillance via eye detection [C]//International Conference on Intelligent Transportation Systems. IEEE, 2014: 366--371.
  • 7张丽雯,杨艳芳,齐美彬,蒋建国.基于面部特征的疲劳驾驶检测[J].合肥工业大学学报(自然科学版),2013,36(4):448-451. 被引量:5
  • 8Luo X, Hu R, Fan To The driver fatigue monitoring system based on face recognition technology[C]//International Conference on Intelligent Control and Information Processing. IEEE, 2013: 384--388.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2001 : 511--518.
  • 10Viola P, Jones M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137--154.

二级参考文献7

共引文献4

同被引文献35

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部