期刊文献+

F_p+uF_p+vF_p上的一类常循环码

A family of constacyclic codes over F_p+uF_p+vF_p
下载PDF
导出
摘要 文章研究了有限环R=F_p+uF_p+vF_p上任意长度的(1-u-v)-常循环码,其中u^2=v^2=0和uv=vu=0。利用同态映射给出了环R上任意长度的(1-u-v)-常循环码的结构,引入了一个从R到F2pp的Gray映射,证明了环R上长为n的(1-u-v)-常循环码的Gray象是F_p上长为2pn、指数为2的线性准循环码。 The (1 -u- v) -constacyclic codes of an vFp are studied, where u2 = v2 = 0 and uv= vu = O, arbitrary length over the finite ring R=Fp +uFp + The structure of (1 - u - v) -constacyclic codes of an arbitrary length over the ring R is determined hy using a homomorphism. A Gray map fromR to Fp^2p is introduced. It is shown that the Gray image of a (1 - u- v) -constacyclic code over R of length n is a linear quasi-cyclic code of length 2pn and index 2 over Fp.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第12期1725-1728,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61370089) 安徽省自然科学基金资助项目(1408085QF116) 浙江省教育厅基金资助项目(Y201326745)
关键词 (1-u-v)-常循环码 循环码 GRAY映射 准循环码 (1 -u-v) -eonstacyclic coder cyclic coder Gray map~ quasi-cyclic code
  • 相关文献

参考文献13

  • 1Hammons A R, Jr,Kumar P V,Calderbank A R,et al. The Z4-linearity of Kerdock, Preparata, Goethals and related codes [J]. IEEE Trans Inform Theory, 1994, 40 (2):301--319.
  • 2Dinh H Q, Lopez-Permouth S R. Cyclic and negacyclic codes over finite chain rings[J]. IEEE Trans Inform Theory,2004,50(8) : 1728--1744.
  • 3Abualrub T, Slap I. Constacyclic codes over F2 + uF2 [J].J Franklin Inst, 2009,346, 520-529.
  • 4Kai X S, Zhu S X, Li P. (1+λu)-constacyclic codes over Fp [u]/(uk)[J]. J Franklin Inst,2010,347: 751--762.
  • 5Zhu S X, Kai X S. A class of constacyclic codes over Zpm[J]. Finite Fields Appl, 2010,16 : 243-254.
  • 6Yildiz B,Karadeniz S. Linear codes over F2+uF2+vF2 uvF2 [J]. Des Codes Crypt, 2010,54 ( 1 ) : 61-81.
  • 7Yildiz B, Karadeniz S. Cyclic codes over F2 + uF2+vF2 + uvF2 [J]. Des Codes Crypt, 2011,58:221-234.
  • 8Yildiz B, Karadeniz S. (1 + v)-constacyclic codes over F2 + uF2 + vF2 + uvF2[J]. J Franklin Inst,2011, 348:2625--2632.
  • 9Zhu S X,Wang Y,Shi M J. Some results on cyclic codes over F2 + vF2 [J]. IEEE Trans Inform Theory, 2010,56 (4) : 1680--1684.
  • 10Zhu S X, Wang L Q. A class of constacyclic codes over Fp+vFp and its Gray image[J]. Discrete Mathematics, 2011, ali = 2677--2682.

二级参考文献24

  • 1Hammons A R,Kumar P V,Calderbank A R,et al. The Z4-linearity of Kerdock Preparata, Goethals and related codes [J]. IEEE Trans Inform Theory, 1994,40 : 301 - 319.
  • 2Kai X S, Zhu S X, Li P. (1+λu) constacyclie codes over Fp[u]/<u^m>[J].J Franklin Inst,2010, 347:751-762.
  • 3Abualrub T, Siap I. Constaeyclic codes over F2+uF2 [J]. J Franklin Inst, 2009, 346 : 520-529.
  • 4Abualrub T, Siap I. Cyclic codes over the rings Z2 +uZ2 and Z2+uZ2+u^2Z2[J]. Des Codes Crypt,2007, 42:273-287.
  • 5Yildiz B, Karadeniz S. Cyclic codes over F2+uF2 + vF2 +uvF2[J]. Des Codes Crypt,2011, 58:221-234.
  • 6Yildiz B, Karadeniz S. (1+v)-Constacyclic codes over F2+uF2+vF2+uvF2 [J]. J Franklin Inst, 2011, 348: 2625 2632.
  • 7Zhu S X, Kai X S. A class of constacyelic codes over Zp^m [J]. Finite Fields Appl,2010, 16: 243-254.
  • 8Dinh H Q, Lopez Permouth S R. Cyclic and negacyclic codes over finite chain rings[J]. IEEE Trans Inform Theory, 2004, 50(8) : 1728-1744.
  • 9Yildiz B, Karadeniz S. Linear codes over F2+uF2+vF2+uvF2[J]. Des Codes Crypt, 2010, 54(1) :61-81.
  • 10Zhu S X, Wang Y, Shi M J. Some results on cyclic codes over F2+vF2[J]. IEEE Trans Inform Theory, 2010, 56 (4): 1680-1684.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部