期刊文献+

Multi-ISM联盟的网络安全系统协作模型及算法

Cooperation model and algorithm for network security system based on multi-ISM alliance
原文传递
导出
摘要 针对现有网络入侵检测系统(NIDS)存在智能程度低、自适应能力弱、协同性差、负载不均衡等局限性,引入了免疫软件人(ISM)智能体的理论,提出了一种基于multi-ISM联盟的网络入侵检测与防御系统的分布式社区协作控制模型及其算法.该模型系统采用了部分-全局规划(PGP)策略以及multi-ISM间的协作、协调和协商机制,融合了网络协作模型与层次模型的优点,从性能上改善了当前分布式入侵检测系统(DIDS)难以适应高带宽、大流量的动态网络环境等问题.实验结果表明:该模型系统相比其他的DIDS,在检测性能和误报率等方面具有明显优势,对于服务器系统资源的占用率不是很大,同时它还能够较好地解决网络信任社区内与社区间的协同防御和预警问题. Existing network intrusion detection system(NIDS)has many disadvantages,such as lower intelligent,poor adaptive capacity,weak coordination and load balancing.Inspired by the intelligence recognition capability of immune-SoftMan(ISM),a novel distributed community cooperation model and corresponding algorithm were thus proposed.The system model was based on multi-ISM alliance for the network intrusion detection and defense system(MISMNIDDS).The partial-global planning(PGP)strategy was adopted by MISMNIDDS.Moreover,the cooperation,negotiation and coordination mechanism of autonomy ISM′s were possessed.The system model combined the merits of the level model and collaboration model,and could be self-updated locally to adapt to dynamic network environment.The results show that the MISMNIDDS is a self-organizing network security system.Compared with traditional DIDS,the MISMNIDDS possesses higher detection performance,lower false alarm rate and fewer server system resources.Furthermore,the MISMNIDDS enables member sites in the same trust community or different ones to resist attacks cooperatively.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期50-55,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61163025) 内蒙古自治区自然科学基金资助项目(2010BS0904) 内蒙古自治区高等学校科学研究基金重点资助项目(NJ10162) 包头市科学研究基金资助项目(2014S2004-3-1-26)
关键词 网络安全 入侵检测 人工智能 免疫软件人 网络结构 协作控制 分布式 network security intrusion detection artificial intelligence immune-SoftMan network architecture cooperation control distributed
  • 相关文献

参考文献17

  • 1Butun I,Morgera S D,Sankar R.A survey of intrusion detection systems in wireless sensor networks[J].IEEE Communications Surveys&Tutorials,2014,16(1):266-282.
  • 2Patel A,Taghavi M,Bakhtiyari K,et al.An intrusion detection and prevention system in cloud computing:a systematic review[J].Journal of Network and Computer Applications,2013,36(1):25-41.
  • 3Salmon H M,de Farias C M,Loureiro P,et al.Intrusion detection system for wireless sensor networks using danger theory immune-inspired techniques[J].International Journal of Wireless Information Networks,2013,20(1):39-66.
  • 4柴争义,刘芳,朱思峰.新型智能入侵防御模型[J].华中科技大学学报(自然科学版),2010,38(1):22-24. 被引量:9
  • 5马占飞.基于免疫机理与“软件人”技术的网络安全系统研究[D].北京:北京科技大学,2008.
  • 6马占飞,郑雪峰.“免疫软件人”概念及其协商控制模型[J].控制与决策,2010,25(5):740-743. 被引量:2
  • 7Xuyana T,Guangping Z.HADS-humanized autonomous decentralized systems[C]∥Proceedings of the International Symposium on Autonomous Decentralized Systems.Chengdu:IEEE Press,2005:593-598.
  • 8Ma Z F.Research on the model and architecture of immune-SoftMan[J].Smart Materials and Intelligent Systems,2011,143(1):239-243.
  • 9Fung C J,Zhang J,Boutaba R.Effective acquaintance management based on Bayesian learning for distributed intrusion detection networks[J].IEEE Transactions on Network and Service Management,2012,9(3):320-332.
  • 10Uddin M,Rahman A A,Uddin N,et al.Signaturebased multi-layer distributed intrusion detection system using mobile Agents[J].IJ Network Security,2013,15(2):97-105.

二级参考文献37

  • 1王洪泊,班晓娟,曾广平,尹怡欣,涂序彦.网络环境下虚拟机器人——“SoftMan”系统平台总体设计[J].计算机科学,2005,32(8):152-154. 被引量:8
  • 2闫巧,江勇,吴建平.基于免疫机理的网络入侵检测系统的抗体生成与检测组件[J].计算机学报,2005,28(10):1601-1607. 被引量:18
  • 3李涛.Idid:一种基于免疫的动态入侵检测模型[J].科学通报,2005,50(17):1912-1919. 被引量:26
  • 4李涛.基于免疫的网络监控模型[J].计算机学报,2006,29(9):1515-1522. 被引量:53
  • 5Hofmeyr S, Forrest S. Architecture for an artificial immune system [ J ]. Evolutionary Computation, 2000, 8(4): 443-473.
  • 6Harmer P K, Williams P D, Gunsch G H, et al. An artificial immune system architecture for computer security applications[J]. IEEE Transaction on Evolu- tionary Computation, 2002, 6(3): 252-280.
  • 7Kim J, Bentley P J. Towards an artificial immune system for network intrusion detection: an investigation of dynamic clonal selection[C]//The Congress on Evolutionary Computation. Piscataway: IEEE Press, 2002:1 015-1 020.
  • 8Kim J, Bentley P J. Immune memory and gene library evolution in dynamical clone selection algorithm[J]. Journal of Genetic Programming and Evolvable Machines, 2008, 5(4): 361-391.
  • 9Dasgupta D. Advances in artificial immune system [J]. IEEE Comput Intel Mag, 2008, 1(4) : 4-9.
  • 10Timmis J, Andrews P, Owens N, et al. An interdisciplinary perspective on artificial immune systems [J].Evol Intel, 2008, 1: 5-26.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部