期刊文献+

基于六角形和球形冰晶模型的卷云辐射特征研究 被引量:8

Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models
下载PDF
导出
摘要 卷云中冰晶粒子的单次光散射计算是卷云辐射传输及云微物理参数反演的重要基础。近年,利用高观测频率的静止气象卫星数据来反演水云和卷云的光学和微物理参数,进而计算地表光通量的研究倍受重视。然而,很多研究中卷云的冰晶用球形模型来模拟。由于不同形状和尺度大小的冰晶对电磁波的散射特征的不同,导致不同冰晶模型计算的卷云环境下卫星观测的辐射值及地表光通量的不同。利用不同尺度大小和电磁波波长的球形和六角形冰晶的单次散射数据,结合RSTAR辐射传输模式来定量分析了卷云环境下不同形状的冰晶模型对计算卫星观测的辐射和地表光通量中的影响。结果显示利用不同形状的冰晶模块来计算的卫星观测的辐射,地表向下辐射通量明显不同。波长在0.4~1.0μm之间的大气窗口部分的光谱辐射通量的差距最大。总辐射通量受云粒子形状的影响显著。研究证实了正确选择冰晶模型对卫星反演卷云微物理和光学参数的反演及计算地表光通量的重要性。该结果对于云微物理参数的反演及地表向下辐射通量的模拟具有参考价值。 Single scattering properties for spherical and hexagonal ice crystal models with different size parameters and wavelengths were employed to calculate satellite observed radiation and downward flux in ground surface using RSTAR radiative transfer model.Results indicated that simulated satellite observed radiation and ground surface downward radiant flux from different shapes of ice crystal models were different.The difference in the spectral radiation fluxes between 0.4and 1.0μm was largest,and particle shapes affected the downward radiant flux significantly.It was verified that the proper selection of the effective ice crystal model is not only important for retrieval of the microphysical and optical parameters of the cirrus cloud,but also important for obtaining the radiant flux on the earth's surface correctly.These results are important for retrieving cloud microphysical parameters and simulation of the ground surface downward radiant flux.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第5期1165-1168,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(61261030)资助
关键词 卷云冰晶 辐射传输模式 相函数 辐射通量 Cirrus cloud ice crystal Radiative transfer model Phase function Radiation flux
  • 相关文献

参考文献10

  • 1李娟,毛节泰.大气冰核浓度对冷云辐射特性的影响以及多年来冷云反照率的变化[J].科学通报,2005,50(21):2413-2421. 被引量:12
  • 2Solomon S, Qin D, Manning M, et al. The Physical Science Basis. Cambridge University Press, USA, 2007. 996.
  • 3Liou K N. Appl. Opt., 1972, 11(3): 667.
  • 4Macke A. Appl. Opt., 1993, 32(15): 2780.
  • 5Yang P, Liou K N, Wyser K, et al. J. Geophys. Res., 2000, 105(14): 4699.
  • 6Yang P, Wei H, Huang H L, et al. Appl. Opt., 2005, 44(26): 5512.
  • 7Yang P, Bi L, Baum B A, et al. Journal of the Atmospheric Sciences, 2013,70(1):330.
  • 8Nakajima T, Tanaka M. J. Quant. Spectrosc. Radiat. Transfer, 1986, 35(1): 13.
  • 9Sekiguchi M, Nakajima T. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008,109(17):2779.
  • 10Cai Q,Liou K N. Appl. Opt.,1982,21(19):3569.

二级参考文献25

  • 1丁守国,石广玉,赵春生.利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J].科学通报,2004,49(11):1105-1111. 被引量:81
  • 2游来光 石安英.北京地区1963年春季冰核浓度变化特点的观测分析[J].气象学报,1964,34(4):548-554.
  • 3Baker M B. Cloud microphysics and climate. Science, 1997, 276: 1072~1078
  • 4Harrison E F, Minnis P, Barkstrom B R. Seasonal variations of cloud radiative forcing derived from the Earth Radiation Budget Experiment. Journal of Geophysical Research, 1990, 95(D11): 18687~18703.
  • 5Ramanathan V, Cess R D, Harrison E F, et al. Cloud radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 1989, 243: 57~63.
  • 6Twomey S, Piepgrass M, Wolfe T L. An assessment of the impact of pollution of global cloud albedo. Tellus, 1984, 36B: 356~366.
  • 7Alkezweeny A J, Burrows D A, Grainger C A. Measurements of cloud-droplet-size distribution in polluted and unpolluted stratiform clouds. Journal of Applied Meteorology, 1993, 32(1): 106~ 115.
  • 8Kaufman Y J, Fraser R S. The effect of smoke particles on clouds and climate forcing. Science, 1997, 277: 1636~1639.
  • 9Rosenfeld D. Suppression of rain and snow by urban and industrial air pollution. Science, 2000, 287: 1793~1796.
  • 10Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle. Science, 2001, 294: 2119~2124.

共引文献11

同被引文献83

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部