期刊文献+

结合机载LiDAR数据与航空可见光影像多层次规则分类建筑物变化检测 被引量:9

Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images
下载PDF
导出
摘要 建议了一种结合Lidar点云与航空可见光影像的建筑物变化检测新方法,利用多层次规则分类算法解决这两种异元异构数据间建筑物变化检测难题。并建议了一种结合面积阈值的形态学后处理方法,从而形成一套完整的处理流程,可应用于实际生产。最终,利用中国吉林省长春市2010年机载LiDAR点云数据和2009年高分辨率航空影像对该方法的有效性进行了评价,通过与基于支持向量机(SVM)面向对象分类的建筑物变化检测算法比较,进一步对本研究建议的方法进行了验证与分析。结果显示,此方法效果理想,其精度优于基于SVM面向对象分类的建筑物变化检测方法。Kappa系数达到0.90,correctness达到0.87。 The present paper proposes a new building change detection method combining Lidar point cloud with aerial image,using multi-level rules classification algorithm,to solve building change detection problem between these two kinds of heterogeneous data.Then,a morphological post-processing method combined with area threshold is proposed.Thus,a complete building change detection processing flow that can be applied to actual production is proposed.Finally,the effectiveness of the building change detection method is evaluated,processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City,Jilin province,China;in addition,compared with the object-oriented building change detection method based on support vector machine(SVM)classification,more analysis and evaluation of the suggested method is given.Experiment results show that the performance of the proposed building change detection method is ideal.Its Kappa index is 0.90,and correctness is 0.87,which is higher than the object-oriented building change detection method based on SVM classification.
作者 巩翼龙 闫利
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第5期1325-1330,共6页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(41271456) 国家科技支撑计划项目(2012BAJ23B03) 对地观测技术国家测绘地理信息局重点实验室开放基金项目(K201403)资助
关键词 航空影像 机载LIDAR 多层次规则分类 变化检测 后处理 Aerial image Airborne LiDAR Multiple level rules classification Change detection Post-processing
  • 相关文献

参考文献7

  • 1管海燕,邓非,张剑清,钟良.面向对象的航空影像与LiDAR数据融合分类[J].武汉大学学报(信息科学版),2009,34(7):830-833. 被引量:31
  • 2Malpica J A, Alonso M C. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2010 38(8): 853.
  • 3Leena Matikainen, Harri Kaartinen, Juha Hyypp. Classification Tree Based Building Detection From Laser Scanner and Aerial Image Data. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland: 282.
  • 4Leena Matikainen, Juha Hyypp, Eero Ahokas, et al. Remote Sensing, 2010, 2: 1217.
  • 5José A Malpicaa, María C Alonsoa, Francisco Papíb, et al. International Journal of Remote Sensing, 2013 34(5): 1652.
  • 6Liang-Chien Chena,Li-Jer Lin. Journal of Applied Remote Sensing,2010,4(1): 1.
  • 7张良,马洪超,高广,陈卓.点、线相似不变性的城区航空影像与机载激光雷达点云自动配准[J].测绘学报,2014,43(4):372-379. 被引量:30

二级参考文献17

  • 1沈蔚,李京,陈云浩,邓磊,彭光雄.基于LIDAR数据的建筑轮廓线提取及规则化算法研究[J].遥感学报,2008,12(5):692-698. 被引量:85
  • 2Baltsavias E P. A Comparison Between Photogrammetry and Laser Scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54 (1):83-94.
  • 3Dowman I. Integration of LiDAR and IFSAR for Mapping[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 34(B2): 90-100.
  • 4Sohn G, Dowman I. Data Fusion of High-Resolution Satellite Imagery and LiDAR Data for Automatic Building Extraction[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007,62: 43-63.
  • 5Schwalbe E. 3D Building Model Generation from Airborne Laser Scanner Data Using 2D GIS Data and Orthogonal Point Cloud Projections[C]. ISPRS WG III/3, III/4, V/3 Workshop, Enschede, Netherlands, 2005.
  • 6Csanyi N, Toth C. Combining LiDAR Data with Stereoscopically Extracted Surfaces: Feature Level Fusion[C]. ISPRS Joint Workshop of ISPRS WG I/ 3 and II/2, Portland, Oregon, USA, 2003.
  • 7Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine vision[M]. USA: International Thomson Publishing, 1998.
  • 8Jensen J R. Introductory Digital Image Processing: a Remote Sensing Perspective (Third Edition) [M]. London: Prentice Hall, 2005.
  • 9Peter Axelsson.Processing of laser scanner data—algorithms and applications[J].ISPRS Journal of Photogrammetry and Remote Sensing.1999(2)
  • 10Emmanuel P. Baltsavias.A comparison between photogrammetry and laser scanning[J].ISPRS Journal of Photogrammetry and Remote Sensing.1999(2)

共引文献59

同被引文献62

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部