期刊文献+

SDSS-DR10中WDMS光谱的自动搜索研究 被引量:1

Searching for WDMS Candidates In SDSS-DR10 With Automatic Method
下载PDF
导出
摘要 SDSS-DR10是美国SLOAN巡天望远镜发布的最新数据,包含了首批APOGEE光谱。这些海量的天文光谱除了可以用来探寻银河系的结构和进行多波段证认外,还蕴藏着包括白矮主序双星在内的特殊天体。白矮主序双星是一类特殊的双星系统,它由两颗主序星演化而来,包含了中低质量恒星演化的终点—白矮星,以及M矮星。白矮主序双星对于密近双星的演化和参数研究有积极的意义。目前针对这类特殊天体的发现主要使用测光筛选结合后期观测证认的方法,不但准确率低,而且需要耗费较多的人工处理时间,无法满足在海量光谱数据中快速发现目标天体的需要。提出一种适用于在海量天文光谱中自动、快速发现白矮主序双星的方法。该方法针对SDSS的DR10数据,使用改进的遗传算法对海量光谱进行自动识别,寻找白矮主序双星候选体。实验共发现了4,140个白矮主序双星,通过交叉证认,其中24个是未被收录的新的源。验证了遗传算法在天文数据挖掘和自动搜索方面的有效性,为在海量光谱中快速发现特殊天体提供了另一途径。该方法也可用于在其他巡天望远镜的海量光谱中进行特定天体的自动识别。提供了新发现的白矮主序双星的赤经、赤纬等信息,补充了现有的白矮主序双星光谱库。 The Sloan Digital Sky Survey(SDSS)has released the latest data(DR10)which covers the first APOGEE spectra.The massive spectra can be used for large sample research including the structure and evolution of the Galaxy and multi-waveband identi cation.In addition,the spectra are also ideal for searching for rare and special objects like white dwarf main-sequence star(WDMS).WDMS consist of a white dwarf primary and a low-mass main-sequence(MS)companion which has positive significance to the study of evolution and parameter of close binaries.WDMS is generally discovered by repeated imaging of the same area of sky,measuring light curves for objects or through photometric selection with follow-up observations.These methods require significant manual processing time with low accuracy and the real-time processing requirements can not be satisfied.In this paper,an automatic and efficient method for searching for WDMS candidates is presented.The method Genetic Algorithm(GA)is applied in the newly released SDSS-DR10 spectra.A total number of 4 140 WDMS candidates are selected by the method and 24 of them are new discoveries which prove that our approach of finding special celestial bodies in massive spectra data is feasible.In addition,this method is also applicable to mining other special celestial objects in sky survey telescope data.We report the identfication of 24 new WDMS with spectra.A compendium of positions,mjd,plate and fiberid of these new discoveries is presented which enrich the spectral library and will be useful to the research of binary evolution models.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第5期1428-1431,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(11473019 61201371 U1431102) 山东省自然科学基金项目(ZR2014AM015 BS2013DX022)资助
关键词 白矮主序双星 数据挖掘 遗传算法 WDMS Data mining GA
  • 相关文献

参考文献2

二级参考文献16

  • 1黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 2Agrawal R, Gehrke J, Gunopulos D, et al. Automatic Sub,space Clustering of High Dimensional Data for Data Mining Applications[ C]//Haas L M, Tiwary A. Proc. of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998: 94 - 105.
  • 3Hawkins D. Identification of Oudiers[M]. London: Chapman and Hall, 1980.
  • 4Aggarwal C C, Yu P S. An Effective and Efficient Algorithm for High-dimensional Outlier Detection[J]. The VLDB Journal,2005,14(2) :211 - 221.
  • 5Aggarwal C C, Yu P S. Outlier Detection for High Dimensional Data[M]. [s. l. ] :ACM,2001.
  • 6Hawkins D.Identification of outliers[M].London:Chapman and Hall,1980.
  • 7Breunig M M,Kriegel H,Ng R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of 2000 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2000:93 -104.
  • 8He Z,Xu X,Deng S.FP-outlier:frequent pattern based outlier detection[J].ComSIS,2005,2(1):103 -118.
  • 9Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[C] // Proceedings of the 24th International Conference on Very Large Databases.New York:ACM Press,1998:392 -403.
  • 10Knorr E M,Ng R T.Finding intensional knowledge of distance-based outliers[C]//Atkinson M P,Orlowska M E,Valduriez P.Proceedings of the 25th International Conference on Very Large Data Bases.Edinburgh:Morgan Kaufmann,1999:211-222.

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部