期刊文献+

二维空间时间分数阶色散方程的差分方法

Difference methods for two-dimensional space-time fractional dispersion equation
下载PDF
导出
摘要 通过把标准的二维色散方程中的一阶时间导数替换成Caputo分数阶导数,两个二阶空间导数分别替换成Riemann-Liouville分数阶导数,得到二维空间时间分数阶色散方程.基于两个空间分数阶导数的转移Grünwald有限差分近似,分别构造了逼近二维空间时间分数阶色散方程的隐式差分格式和交替方向隐式差分格式.对两种差分格式分别进行了相容性、稳定性和收敛性分析.应用数学归纳法证明了两种隐式差分格式都是无条件稳定和收敛的并且得到了收敛阶.对两种隐式差分格式的收敛速度和计算复杂度进行了比较.基于以上所构造的差分格式,对精确解已知的一个空间时间分数阶色散方程进行了数值实验模拟,模拟结果验证了理论分析的正确性. The two-dimensional space-time fractional dispersion equation is obtained from the standard two-dimensional dispersion equation by replacing the first order time derivative by the Caputo fractional derivative,and the two second order space derivatives by the Riemann-Liouville fractional derivatives,respectively.Base on the shifted Grünwald finite difference approximation for the two space fractional derivatives,an implicit difference method and a practical alternate direction implicit difference method were proposed to approximate the fractional dispersion equation. The consistency,stability,and convergence of the two implicit difference methods were analyzed. By using mathematical induction method,it was proven that the two implicit difference methods were all unconditionally stable and convergent and the order of convergence were obtained. The convergence speed and computational complexity of the two implicit difference methods were compared. A numerical simulation for a space-time fractional dispersion equation with known exact solution was also presented,and correctness of the theoretical analysis was verified by the numerical results.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第12期2296-2301,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61271010) 北京市自然科学基金(4152029) 北京航空航天大学博士研究生创新基金
关键词 分数阶导数 分数阶色散方程 有限差分方法 稳定性 收敛性 fractional derivatives fractional dispersion equation finite difference method stability convergence
  • 相关文献

参考文献18

  • 1Arrarás A,Portero L,Jorge J C.Convergence of fractional step mimetic finite difference discretizations for semilinear parabolic problems[J].Applied Numerical Mathematics,2010,60(4):473-485.
  • 2Meerschaert M,Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations[J].Journal of Computational and Applied Mathematics,2004,172(1):65-77.
  • 3Meerschaert M,Scheffler H,Tadjeran C.Finite difference methods for two-dimensional fractional dispersion equation[J].Journal of Computational Physics,2006,211(2):249-261.
  • 4Liu F,Anh V,Turner I.Numerical solution of the space fractional Fokker-Planck equation[J].Journal of Computational and Applied Mathematics,2004,166(1):209-219.
  • 5Tadjeran C,Meerschaert M,Scheffler H.A second-order accurate numerical approximation for the fractional diffusion equation[J].Journal of Computational Physics,2006,213(2):205-213.
  • 6Tadjeran C,Meerschaert M.A second-order accurate numerical method for the two-dimensional fractional diffusion equation[J].Journal of Computational Physics,2007,220(2):813-823.
  • 7Liu Q,Liu F,Turner I,et al.Approximation for the Levy-Feller advection-dispersion process by random walk and finite difference method[J].Journal of Computational Physics,2007,222(1):57-70.
  • 8Zhuang P,Liu F,Anh V,et al.Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term[J].SIAM Journal of Numerical Analysis,2009,47(3):1760-1781.
  • 9Liu F,Zhuang P,Anh V,et al.Stability and convergence of the difference methods for the space-time fractional advection- diffusion equation[J].Applied Mathematics and Computation,2007,191(1):12-20.
  • 10Podlubny I.Fractional differential equations[M].New York:Academic Press,1999:51-87.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部