期刊文献+

超声速气流中液体横向射流的破碎特性 被引量:8

Breakup characteristics of liquid jet in supersonic cross flow
下载PDF
导出
摘要 为了研究超燃冲压发动机燃烧室内液体燃料雾化掺混特性,确定影响雾化的关键因素以实现高效燃烧,在超燃冷态雾化实验平台,以纹影法为主,同时辅助以平面激光诱导荧光(PLIF)技术和基于向前散射原理的颗粒直径测量技术,分别对横向射流航空煤油RP-3和水在超声速气流中的流场波系结构、射流穿透深度和诱导弓形激波强度等进行了实验研究,并对射流雾化掺混特性进行了数理分析.结果表明:定义的无量纲参数能够定性分析两种液体横向射流在超音速流场中的变化规律,并得到与实验结果一致的结论;在动压比1.0-3.3范围内,射流穿透深度和诱导弓形激波强度随着动压比和射流速度的增加而增加;表面张力和黏度对超声速射流掺混有重要影响. In order to study the atomization mixing characteristics of liquid fuel in scramjet combustor as well as determine the key factors influencing the atomization so as to realize efficient combustion,the flow field structure of the shock wave,jet penetration and induced bow shock strength of liquid jet aviation kerosene RP-3 and water in supersonic flow were experimentally studied respectively by mainly using the schlieren method,assisted with planar laser induced fluorescence( PLIF) technology and particle diameter measurement technology in supersonic combustion cold spray experiment platform. And jet atomization mixing characteristics were mathematically analyzed. It is demonstrated that defined dimensionless parameters could qualitative analyze variation trend associated with both two kinds of liquid jet in supersonic cross flow,and the conclusion is consistent with the experimental result. Within the scope of the dynamic pressure ratio of 1. 0- 3. 3,the jet penetration and induced bow shock strength increases with the increase of dynamic pressure ratio and jet velocity. Surface tension and viscosity have important effects on the supersonic jet mixing.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第12期2356-2362,共7页 Journal of Beijing University of Aeronautics and Astronautics
关键词 超燃冲压发动机 横向射流 纹影法 平面激光诱导荧光(PLIF) 雾化 scramjet traverse jet schlieren method planar laser induced fluorescence(PLIF) atomization
  • 相关文献

参考文献12

  • 1Bogdanoff D W.Advanced injection and mixing techniques for scramjet combustors[J].Journal of Propulsion and Power,1994,10(2):183-190.
  • 2吴先宇,陈晖,刘睿,丁猛,王振国.碳氢燃料超燃冲压发动机燃烧室控制试验[J].航空动力学报,2008,23(8):1541-1545. 被引量:2
  • 3Fiorina B,Lele S.Numerical investigation of a transverse jet in a supersonic crossflow using large eddy simulation,AIAA-2006-3712[R].Reston:AIAA,2006.
  • 4Vinogradov V A,Kobigskij S A,Petrov M D.Experimental investigation of kerosene fuel combustion in supersonic flow[J].Journal of Propulsion and Power,1995,11(1):130-134.
  • 5Maniaci D.Relative performance of a liquid hydrogen-fueled commercial transport,AIAA-2008-152[R].Reston:AIAA,2008.
  • 6Yuan Y,Yang M,Zhang T,et al.Visualization of vaporized kerosene combustion in a supersonic combustor using pulsed schlieren system,AIAA-2012-3848[R].Reston:AIAA,2012.
  • 7YANG Hui LI Feng SUN Baigang.Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method[J].Chinese Journal of Aeronautics,2012,25(1):42-50. 被引量:5
  • 8Donohue J M,McDaniel Jr J C,Hai-Hariri H.Experimental and numerical study of swept ramp injection into a supersonic flowfield[J].AIAA Journal,1994,32(9):1860-1867.
  • 9Yang H,Li F,Sun B G,et al.Schlieren and PLIF measurements of liquid fuel injection in Mach 2 supersonic crossflow[J].Advanced Materials Research,2012,571:701-705.
  • 10Schetz J A,Situ M,Hewitt P W.Transverse jet breakup and atomization with rapid vaporization alongthe trajectory[J].AIAA Journal,1985,23(4):596-603.

二级参考文献29

  • 1丁猛,吴继平,梁剑寒,刘卫东,王振国.文氏管在煤油燃料超燃冲压发动机中的应用[J].推进技术,2005,26(1):16-19. 被引量:14
  • 2Brand J, Sampath S, Shum F, et al. Potential use of hydrogen in air propulsion. AIAA-2003-2879, 2003.
  • 3Maniaci D C. Relative performance of a liquid hydro- gen-fueled commercial transport. AIAA-2008-0152, 2008.
  • 4Edwards T, Meyer M L. Propellant requirements for future aerospace propulsion systems. AIAA-2002-3870, 2002.
  • 5Edwards T. Liquid fuels and propellants for aerospace propulsion: 1903-2003. Journal of Propulsion and Power 2003; 19(6): 1089-1107.
  • 6Bouchez M, Montazel X, Dufour E. Hydrocarbon fu- eled airbreathing propulsion for high speed missiles. AIAA-1998-3729, 1998.
  • 7Semenov V L. The possibility investigation of strut fuel feed system use in scramjet combustors on results of tests with hydrocarbon fuel. Moscow: Central Insti- tute of Aviation Mortos, 1997.
  • 8Manna P, Behera R, Chakraborty D. Liquid-fueled strut-based scramjet combustor design: a computation- al fluid dynamics approach. Journal of Propulsion and Power 2008; 24(2): 274-281.
  • 9Rust B, Gerlinger P, Aigner M. An improved lobed strut injector concept for supersonic combustion. AIAA- 2010-6962, 2010.
  • 10Rust B, Gerlinger P, Lourier J M, et al. Numerical si- mulation of the internal and external flowfields of a scramjet fuel strut injector including conjugate heat transfer. AIAA-2011-2207, 2011.

共引文献5

同被引文献61

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部