期刊文献+

Fabrication of Porous Nitrogen-Doped Carbon Materials as Anodes for High-Performance Lithium Ion Batteries

Fabrication of Porous Nitrogen-Doped Carbon Materials as Anodes for High-Performance Lithium Ion Batteries
原文传递
导出
摘要 The hierarchical porous nitrogen-doped carbon materials (HNCs) were prepared by using nitrogen containing gelatin as the carbon source and nano-silica obtained by a simple flame synthesis approach as the template. All of the as-obtained HNCs show much higher Li storage capacity as compared with commercial graphite. Specifically, HNC-700 with biggest micropore volume and highest nitrogen content exhibited optimal reversible capacities of 1084 mAh·g^-1 at the current density of 37.2 mA·g^-1 (0.1 C) and 309 mAh·g^-1 even at 3.72 A·g^-1 (10 C). This result suggests that HNCs should be a promising candidate for anode materials in high-rate lithium ion batteries (LIBs). The hierarchical porous nitrogen-doped carbon materials (HNCs) were prepared by using nitrogen containing gelatin as the carbon source and nano-silica obtained by a simple flame synthesis approach as the template. All of the as-obtained HNCs show much higher Li storage capacity as compared with commercial graphite. Specifically, HNC-700 with biggest micropore volume and highest nitrogen content exhibited optimal reversible capacities of 1084 mAh·g^-1 at the current density of 37.2 mA·g^-1 (0.1 C) and 309 mAh·g^-1 even at 3.72 A·g^-1 (10 C). This result suggests that HNCs should be a promising candidate for anode materials in high-rate lithium ion batteries (LIBs).
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2015年第11期1293-1302,共10页 中国化学(英文版)
基金 We greatly appreciate the Natural Science Foundation of China (No. 21275104) for supporting this work.
关键词 HNCS GELATIN micropore volume nitrogen content capacities HNCs, gelatin, micropore volume, nitrogen content, capacities
  • 相关文献

参考文献59

  • 1Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
  • 2Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. J. Am. Chew. Soc. 2010, 132, 12556.
  • 3Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
  • 4Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.; Wang, L. M.; Zhang, X. B. J. Mater. Chem. 2012, 22, 2844.
  • 5Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Zhang, X. B. Adv. Functional Mater. 2013, 23, 4274.
  • 6Wang, H.; Ma, D.; Huang, X.; Huang, Y.; Zhang, X. Sci. Rep. 2012,2, 701.
  • 7Huang, X. L.; Zhao, X.; Wang, Z. L.; Wang, L. M.; Zhang, X. B. J. Mater. Chem. 2012, 22, 3764.
  • 8Huang, X. L.; Chai, J.; Jiang, T.; Wei, Y. J.; Chen, G.; Liu, W. Q.; Zhang, X. B. J. Mater. Chem. 2012, 22, 3404.
  • 9Pei, Y.; Wang, S.; Zhou, Q.; Xie, S. H.; Qiao, M. H.; Jiang, Z. Y.; Fan, K. N. Chin. J. Chem. 2007, 25, 1385.
  • 10Huang, F.; Zhan, H.; Zhou, Y. H. Chin. J. Chem. 2003, 21, 1275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部