期刊文献+

枝晶形貌对690合金热变形行为的影响 被引量:2

Effect of dendrite morphology on hot deformation behaviors of 690 alloy
下载PDF
导出
摘要 研究了铸态690合金在不同初始组织条件下(细柱状晶、粗柱状晶和等轴枝晶)的热压缩流变曲线和变形组织,并对变形后样品的微取向进行了分析,结果表明:在铸态条件下,690合金的高温流变抗力随着变形温度降低、应变速率升高和变形量增大而升高,在50%的压缩量下,高温(1200℃)和高速(1 s^(-1))有利于动态再结晶的发生。当压缩方向垂直于柱状晶方向时,二次枝晶滑动作为一种变形机制,导致应变速率敏感因子增大,此时细柱状晶样品变形抗力最小,再结晶比例最低,而初始组织为粗柱状晶和等轴枝晶的样品分别具有最大的变形抗力和最有利的动态再结晶条件。 Hot compression flow curves and microstructure of alloy 690 samples with different initial microstructure( i. e. fine columnar grains,coarse columnar grains and equiaxed dendrites) were studied. Micro-orientations were also analyzed after deformation. The results indicate that flow stresses can increase with the reduction of temperature and the increasing of strain rate and true strain for 690 cast ingot.High temperature( 1200 ℃) and strain rate( 1 s^-1) are in favor of dynamic recrystallization( DRX) at strain of 50%. Secondary dendrite sliding is an effective deformation mechanism when the compression direction is perpendicular to columnar grains,leading to the increase of strain rate sensitivity. On this premise,samples with fine columnar grains can get the lowest flow stress and recrystallization fraction. In contrast,coarse grain and equiaxed dendrite specimens have the largest stress and most favorable for DRX kinetics,respectively.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第12期44-49,共6页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金青年科学基金(51301085) 南京工程学院引进人才科研启动基金(YKJ201305)
关键词 柱状晶 枝晶滑动 动态再结晶 690合金 columnar grain dendrite sliding dynamic recrystallization 690 alloy
  • 相关文献

参考文献12

  • 1刘东,杨艳慧.大型GH4169合金铸锭开坯过程的数值模拟[J].稀有金属材料与工程,2007,36(12):2094-2098. 被引量:7
  • 2曲敬龙,杜金辉,邓群,庄景云,吕旭东,吴贵林.GH720Li合金铸锭热加工过程中的组织演变行为[J].材料工程,2006,34(z1):139-142. 被引量:11
  • 3张海燕,张士宏,程明.GH4169合金开坯锻造中组织演变的数值分析[J].兵器材料科学与工程,2012,35(2):19-23. 被引量:8
  • 4Semiatin S L,Weaver D S,Fagin P N, et al. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material[ J]. Metallurgical and Materials Transactions A ,2004,35:679 - 693.
  • 5Weaver D S, Semiatin S L. Recrystallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation [ J]. Seripta Materialia, 2007,57 : 1044 - 1047.
  • 6Mayata M C, Nilsson E R, Brown E L,et al. Hot working and recrystallization of as-cast 316L[ J]. Metallurgical and Materials Transactions A,2003, 34 : 1683 - 1703.
  • 7Campbell G T,Abrahamson E P, Grant N J. The recrystallization behavior of an austenitic stainless steel ingot structure due to hot deformation [ J] Metallurgical Transactions, 1974.5 : 1875 - 1881.
  • 8杨亮,董建新,张麦仓.690合金高温变形行为与动态再结晶模型[J].稀有金属材料与工程,2012,41(4):727-732. 被引量:22
  • 9Bi Z 51,Zhang M C, Dong J X, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys[ J~. Materials Science and Engineering A ,2010,527:4373 -4382.
  • 10Wang J, Dong J X,Zhang M C, et al. Hot working characteristics of nickel-base superalloy 740H during hot compression [ J ]. Materials Science and Engineering A ,2013,566:61 - 70.

二级参考文献53

  • 1赵长虹,孙恺红,王继红,吴贵林,王健豪,金槿秀,田树森,庄景云,邓群,杜金辉.GH4169合金大锭型真空自耗锭的锻造开坯工艺及组织[J].钢铁研究学报,2003,15(z1):351-356. 被引量:4
  • 2[2]MONAJATI H,JAHAZI M,BAHRAMI R,et al.The influence of heat treatment condizions onγ′characteristics in Udimet() 720[J].Materials Science and Engineering A,2004,373:286-293.
  • 3[3]MARCHIONNI M,OSINKOLUG A,ONOFRIO G.High temperature low cycle fatigue behaviour of UDIMET 720 Li superalloy[J].International Journal of Fatigue,2002,24:1261-1267.
  • 4Yang D Y,Lee N K,Yooh J H.A 3-dimensional simulation for isothermal turbine blade forging by the rigid-viscoplastic finite element method[J].Journal of Materials Engineer and Perform,1993,2(1):119-124.
  • 5Cho R,Lee N K,Yang D Y.A 3D simulation for non-isothermal forging of a steam turbine blade by the thermoviscoplastic finite element method[J].Journal of Engineer Manufacture,1993,207:265-273.
  • 6Lv C,Zhang L W,Wang Z K.3D rigid-viscoplastic FEM simulation of forging process of a gas turbine rotor blade[J].Materials Science Forum,2007,523/533:733-736.
  • 7Na Y S,Yeom J T,Park N K.Simulation of microstructures for alloy 718 blade forging using 3D FEM simulator[J].Journal of Materials Processing Technology,2003,141:337-342.
  • 8Dandre C A,Roberts S M,Evans R W,et al.Microstructural evolution of Inconel* 718 during ingot breakdown:process modelling and validation[J].Materials Science and Technology,2000,16(1):14-25.
  • 9Tin S,Lee P D,Kermanpur A.Integrated modeling for the manufacture of Ni-based superalloy discs from solidification to final heat treatment[J].Metallurgical and Materials Transactions A,2005,36:2493-2504.
  • 10Kermanpur A,Tin S,Lee P D,et al.Integrated Modeling for the Manufacture of Aerospace Discs:Grain Structure Evolution[J].Journal of the Minnerals,Metal and Materials Society,2004,56:72-78.

共引文献153

同被引文献29

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部