期刊文献+

轧制及退火后Al_(0.3)CoCrFeNi高熵合金的组织和力学性能 被引量:5

Microstructure and mechanical properties of Al_(0.3)CoCrFeNi high-entropy alloy processed by rolling and subsequent annealing
下载PDF
导出
摘要 利用X射线衍射仪、扫描电镜、电子背散射衍射、透射电镜以及拉伸实验,研究了FCC结构Al_(0.3)CoCrFeNi高熵合金经90%压下量轧制及退火后的组织和力学性能。结果表明:经轧制及退火(600~1000℃)后,合金发生再结晶,富集Al、Ni原子的有序BCC相优先形成于再结晶FCC相的晶界处,且其体积分数随着退火温度上升先增大后减小。轧制显著强化该合金,随后600℃退火可实现不牺牲均匀塑性而进一步强化该合金的目的,升高退火温度则引起该合金强度下降,塑性增大。经800℃退火后合金表现出较为理想的强度-塑性匹配,其均匀伸长率为34.1%,且抗拉强度可高达935MPa,约是铸态合金(303MPa)的3倍,这主要归结于再结晶组织细化及有序BCC相的析出强化。 Microstructure and mechanical properties of as-cast FCC Al0. 3Co Cr Fe Ni high-entropy alloy after rolling and subsequent annealing were investigated by means of XRD,SEM,EBSD,TEM and tensile test. The results show that after rolling and subsequent annealing at600-1000 ℃,recrystallization occurs and Al Ni-rich ordered BCC phases preferentially precipitate at FCC grain boundaries. With annealing temperature increasing,the volume fraction of precipitations first increases and then decreases. This alloy can be dramatically strengthened by rolling and can be further hardened without sacrificing uniform ductility by subsequent annealing at 600 ℃,while a decrease of strength and an increase of ductility appear after further increasing annealing temperature. Specially,after rolling and annealing at 800 ℃,the alloy exhibits optimal mechanical performance with uniform elongation of 34. 1% and ultimate tensile strength of935 MPa,which is three times than that of the as-cast. This is ascribed to refined microstructure and precipitation hardening.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2015年第12期72-77,共6页 Transactions of Materials and Heat Treatment
基金 福建省教育厅重点项目(JA11179) 福建省高校产学合作科技重大项目(2014H6005)
关键词 高熵合金 再结晶 析出相 组织 力学性能 high-entropy alloy recrystallization precipitation microstructure mechanical property
  • 相关文献

参考文献15

  • 1Yeh J W, Chen S K, Lin S J,et al. N anostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[ J ]. Advanced Engineering Materials,2004,6 (5) :299 - 303.
  • 2Zhang Y,Zuo T T,Tang Z, et al. Microstructures and properties of high-entropy alloys[ J]. Progress in Materials Science,2014,61:1 -93.
  • 3He J Y,Liu W H,Wang H,et al. Effects of A1 addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [ J ]. Aeta Materialia. 2014,62 (5) : 105 - 113.
  • 4Ma S G,Zhang S F, Qiao J W,et al. Superior high tensile elongation of a single-crystal CoCrFeNiAlo. 3 high-entropy alloy by Bridgman solidification [ J]. Intermetallics,2014,54 : 104 - 109.
  • 5Yasuda H Y,Shigeno K,Nagase T. Dynamic strain aging of A10.3 CoCrFeNi high entropy alloy single crystals[J]. Scripta Materialia. 2015,108:80 - 83.
  • 6Shun T, Du Y. Microstructure and tensile behaviors of FCC A10.3 CoCrFeNi high entropy alloy [ ] ]. Journal of Alloys and Compounds,2009,479 ( l / 2) :157 - 160.
  • 7Wen Y R, Li Y P, Hirata A, et al. Synergistic alloying effect on mierostructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys[ J~. Acta Materialia,2013,61 (20) :7726 - 7740.
  • 8Bhattaeharjee P P, Sathiaraj G D,Zaid M,et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy [ J]. Journal of Alloys and Compounds,2014,587:544 -552.
  • 9Tang Q H, Huang Y, Huang Y Y, et al. Hardening of an Als. 3 CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing [ J 1 Materials letters ,2015,151 : 126 - 129.
  • 10Wang Y B,Liao X Z,Zhao Y H,et al. The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion[ J]. Materials Science and Engineering A ,2010,527 ( 18/19 ) :4959 - 4966.

二级参考文献48

  • 1刘鑫刚,聂绍珉,任运来.预变形高温扩散对合金元素分布和组织的影响[J].塑性工程学报,2007,14(6):138-141. 被引量:4
  • 2胡勇,胡满红,范志康.锻造处理对CuCr合金组织和性能的影响[J].太原重型机械学院学报,2004,25(4):275-278. 被引量:2
  • 3毛信孚,刘小文,王玉,冯红超.碳素结构钢与高速工具钢摩擦焊与闪光焊接头的组织和性能[J].材料工程,2006,34(12):28-31. 被引量:4
  • 4Fu H G,Xiao Q,Xing J D. A study of segregation mechanism in centrifugal cast high speed steel rolls [ J ]. Materials Science and Engineering A, 2008,479:253 - 260.
  • 5Lippard H E, Campbell C E, Dravid V P, et al. Microsegregation behavior during solidification and homogenization of AerMet100 steel [ J ]. Metallurgical and Materials Transaction B, 1998,29 ( 1 ) :205 - 210.
  • 6Wang Z B, Lu J, Lu K. C hromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment[ J]. Acta Materialia, 2005,53 (7) :2081 - 2089.
  • 7Wang Z B, Tao N R, Tong W P, et al. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [ J ]. Acta Materialia,2003,51 (14) :4319 -4329.
  • 8Lu S D, Wang Z B, Lu K. Enhanced chromizing kinetics of tool steel by means of surface mechanical attrition treatment [ J ]. Materials Science and Engineering A ,2010,527 (4 - 5 ) :995 - 1002.
  • 9Patterson A. The scherrer formula for X-Ray particle size determination [ J]. Phys Rev, 1939,56 (10) : 978 - 982.
  • 10Shewmon P G. Diffusion in Solids [ M ]. New York : McGraw-Hill, 1963.

共引文献5

同被引文献22

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部