摘要
电阻抗成像EIT(Electrical impedance tomography)技术利用不同媒质具有不同的电导率这一物理基础,通过测量目标场在一定电刺激下所呈现出的电特性,推导出目标场内部的电导率分布信息,进而推知该场中媒质的分布情况。EIT图像重建问题是一个非线性的病态逆问题,且测量系统往往存在噪声,使重建图像中存在伪影,传统的正则化方法对重建图像伪影的抑制能力有限。本文将一种统计学方法,即最大期望EM(expectation maximization)算法应用于EIT逆问题求解。它将EIT的数学模型转化为非负约束极小化问题,并通过梯度投影简化牛顿算法GPRN(gradient projection-reduced Newton iteration method)求解该问题。与传统的Tikhonov算法和共轭梯度算法CG(conjugate gradient)相比,有效地抑制了重建图像中伪影的产生。仿真和实验结果表明,EIT系统可以通过EM算法获得高质量的重建图像。
Electrical impedance tomography(EIT) technology is based on the physical basis that different mediahave different electrical conductivity. The inverse problem of EIT image reconstruction is a nonlinear and ill-posedproblem.The reconstructed images always have artifacts because the noise in the measure system. Hence the tradi-tional regularization method cannot avoid the artifacts which in reconstructed image by the noise. In this paper,theEIT inverse peoblem will be solved by expectation maximization(EM) method,which is a statistical method. TheEIT mathematical model is transformed into the non-negatively constrained likelihood minimization problem by theEM method. And this problem is solved using gradient projection-reduced Newton(GPRN) iteration method. Com-pared with the conjugate gradient(CG) and the Tikhonov method,both of the simulation and experimental resultsshow that EIT can get better reconstruction results by the EM method. As a result,the EM method can get non-nega-tive solution. Besides,the EM method can avoid the artifacts in the reconstructed images effectively and improvethe quality of the reconstructed images.
出处
《传感技术学报》
CAS
CSCD
北大核心
2015年第11期1652-1658,共7页
Chinese Journal of Sensors and Actuators
基金
国家科技支撑计划重点项目(2013BAF06B00)
国家自然科学基金(61373104
61402330
61405143)
高等学校博士点专项科研基金(20131201120002)
天津市高等学校科技发展基金计划项目(2012ZD03
20140727)
关键词
EM算法
电阻抗成像系统
GPRN算法
图像重建
非负约束极小化问题
EM method
electrical impedance to mography
GPRN method
image reconstruction
non-negatively constrained likelihood minimization problem