摘要
To isolate and separate thorium from nitric acid solutions, three silica-based anion exchange resins were synthesized. Batch experiments were carried out to investigate adsorption behavior of thorium in nitric acid solutions. Adsorption at different concentrations of nitric acid and thorium, influence of contact time and coexisting metal ions, and effect of NO3– were investigated in detail. It was found that at high HNO3 concentrations,the resins exhibited higher adsorption capacity and better affinity towards thorium. The adsorption kinetics could be described by the pseudo-second order model equation, while the adsorption isotherms were well correlated by the Langmuir model. The maximum capacity towards thorium species on SiPyR-N4 was evaluated at 27–28 mg/g-resin. The thermodynamic parameters indicated the adsorption was an exothermic reaction. The presence of NO3– was found to promote the retention of the thorium species.
To isolate and separate thorium from nitric acid solutions, three silica-based anion exchange resins were synthesized. Batch experiments were carried out to investigate adsorption behavior of thorium in nitric acid solutions. Adsorption at different concentrations of nitric acid and thorium, influence of contact time and coexisting metal ions, and effect of NO3^– were investigated in detail. It was found that at high HNO_3 concentrations,the resins exhibited higher adsorption capacity and better affinity towards thorium. The adsorption kinetics could be described by the pseudo-second order model equation, while the adsorption isotherms were well correlated by the Langmuir model. The maximum capacity towards thorium species on SiPyR-N_4 was evaluated at 27–28 mg/g-resin. The thermodynamic parameters indicated the adsorption was an exothermic reaction. The presence of NO3^– was found to promote the retention of the thorium species.
基金
Supported by the National Natural Science Foundation of China(No.91026019)