摘要
A compact X-ray detector based on the lutetium yttrium oxyorthosilicate scintillator(LYSO) and silicon photomultiplier(Si PM) has been designed and fabricated for the hard X-ray diagnosis on the HL_2A and HL_2M Tokamak devices. The LYSO scintillator and Si PM in small dimensions were combined in a heat shrink tube package, making the detector compact and integrative. The Monte Carlo particle transport simulation tool,Geant4, was utilized for the design of the detector for the hard X-ray from 10 keV to 200 keV and the best structure scheme was presented. Finally, the detector was used to measure the photon spectrum of a ^(137)Cs gamma source with a pre-amplifier and a multichannel amplitude analyzer. The measured spectrum is consistent with the theoretic spectrum, it has shown that the energy resolution of the detector is less than 14.8% at an energy of 662 keV.
A compact X-ray detector based on the lutetium yttrium oxyorthosilicate scintillator(LYSO) and silicon photomultiplier(Si PM) has been designed and fabricated for the hard X-ray diagnosis on the HL_2A and HL_2M Tokamak devices. The LYSO scintillator and Si PM in small dimensions were combined in a heat shrink tube package, making the detector compact and integrative. The Monte Carlo particle transport simulation tool,Geant4, was utilized for the design of the detector for the hard X-ray from 10 keV to 200 keV and the best structure scheme was presented. Finally, the detector was used to measure the photon spectrum of a ^(137)Cs gamma source with a pre-amplifier and a multichannel amplitude analyzer. The measured spectrum is consistent with the theoretic spectrum, it has shown that the energy resolution of the detector is less than 14.8% at an energy of 662 keV.
基金
Supported by the National Natural Science Foundation of China(Nos.11375263 and 11375195)
National magnetic confinement fusion Science Program of China(No.2013GB104003)